Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 76
Number of page(s) 46
DOI https://doi.org/10.1051/cocv/2021071
Published online 13 July 2021
  1. C. Amrouche and N.E.H. Seloula, Lp-theory for vector potentials and Sobolev’s inequalities for vector fields. C. R. Math. Acad. Sci. Paris 349 (2011) 529–534. [Google Scholar]
  2. M. Badra and T. Takahashi, Feedback stabilization of a fluid–rigid body interaction system. Adv. Differ. Equ. 19 (2014) 1137–1184. [Google Scholar]
  3. M. Badra and T. Takahashi, Feedback stabilization of a simplified 1d fluid-particle system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 369–389. [Google Scholar]
  4. H. Beirão Da Veiga, Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9 (2004) 1079–1114. [Google Scholar]
  5. M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 777–813. [Google Scholar]
  6. M. Boulakia and S. Guerrero, Local null controllability of a fluid–solid interaction problem in dimension 3. J. Eur. Math. Soc. (JEMS) 15 (2013) 825–856. [Google Scholar]
  7. M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem. ESAIM: COCV 14 (2008) 1–42. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. D. Chae, O.Y. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Syst. 2 (1996) 449–483. [Google Scholar]
  9. C. Conca, J. San Martín and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25 (2000) 1019–1042. [Google Scholar]
  10. J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with N − 1 scalar controls. J. Differ. Equ. 246 (2009) 2908–2921. [Google Scholar]
  11. J.-M. Coron, F. Marbach and F. Sueur, Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions. J. Eur. Math. Soc. (JEMS) 22 (2020) 1625–1673. [Google Scholar]
  12. B. Desjardins and M.-J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. [Google Scholar]
  13. B. Desjardins and M.-J. Esteban, On weak solutions for fluid–rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25 (2000) 1399–1413. [Google Scholar]
  14. C. Fabre and G. Lebeau, Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21 (1996) 573–596. [Google Scholar]
  15. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1399–1446. [Google Scholar]
  16. E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [Google Scholar]
  17. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Springer Monographs in Mathematics, Springer, New York, second ed. (2011). [Google Scholar]
  18. D. Gérard-Varet and M. Hillairet, Existence of weak solutions up to collision for viscous fluid–solid systems with slip. Commun. Pure Appl. Math. 67 (2014) 2022–2075. [Google Scholar]
  19. D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow. J. Math. Pures Appl. 103 (2015) 1–38. [Google Scholar]
  20. C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem. ESAIM: M2AN 34 (2000) 609–636. [CrossRef] [EDP Sciences] [Google Scholar]
  21. G. Grubb and V.A. Solonnikov, Reduction of basic initial-boundary value problems for the Stokes equation to initial-boundary value problems for parabolic systems of pseudodifferential equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987) 37–48, 187. [Google Scholar]
  22. S. Guerrero, Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions. ESAIM: COCV 12 (2006) 484–544. [EDP Sciences] [Google Scholar]
  23. S. Guerrero and C. Montoya, Local null controllability of the N-dimensional Navier-Stokes system with nonlinear Navier-slip boundary conditions and N − 1 scalar controls. J. Math. Pures Appl. 113 (2018) 37–69. [Google Scholar]
  24. M.D. Gunzburger, H.-C. Lee, and G.A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2 (2000) 219–266. [Google Scholar]
  25. O.Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV 6 (2001) 39–72. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  26. O.Y. Imanuvilov and T. Takahashi, Exact controllability of a fluid–rigid body system. J. Math. Pures Appl. 87 (2007) 408–437. [Google Scholar]
  27. A. Roy and T. Takahashi, Local null controllability of a rigid body moving into a Boussinesq flow. Math. Control Relat. Fields 9 (2019) 793–836. [Google Scholar]
  28. J.A. San Martín, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ratl. Mech. Anal. 161 (2002) 113–147. [Google Scholar]
  29. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003) 1499–1532. [Google Scholar]
  30. T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004) 53–77. [Google Scholar]
  31. C. Wang, Strong solutions for the fluid–solid systems in a 2-D domain. Asymptot. Anal. 89 (2014) 263–306. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.