Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 64
Number of page(s) 26
Published online 22 June 2021
  1. M. Abdelli, A. Hafdallah, F. Merghadi and M. Louafi, Regional averaged controllability for hyperbolic parameter dependent systems. Control Theory Tech. 18 (2020) 307–314. [Google Scholar]
  2. C. Bardos, F. Bourquin and G. Lebeau, Calcul de dérivées normales et méthode de Galerkin appliqué au problème de contrôllabilité exacte. C.R. Acad. Sci. Paris 313 I (1991) 757–760. [Google Scholar]
  3. F. Bourquin, A numerical approach to the exact controllability of Euler-Navier- Bernoulli beams, in Proceedings of the First World Conference on Structural Control, Pasadena (California) (1994) 120–129. [Google Scholar]
  4. F. Bourquin, Approximation theory for the problem of exact controllability of the wave equation with boundary control. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993). SIAM, Philadelphia (1993) 103–112. [Google Scholar]
  5. E. Burman, A. Feizmohammadi and L. Oksanen, A fully discrete numerical control method for the wave equation. SIAM J. Control Optim. 58 (2020) 1519–46. [Google Scholar]
  6. N. Cindea and A. Münch, A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations. Calcolo 52 (2015) 245–288. [Google Scholar]
  7. N. Cindea, E. Fernandez-Cara and A. Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM: COCV 19 (2013) 1076–1108. [CrossRef] [EDP Sciences] [Google Scholar]
  8. C. Castro, S. Micu, A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28 (2008) 186–214. [Google Scholar]
  9. B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521–550. [Google Scholar]
  10. S. Ervedoza and E. Zuazua, The wave equation: control and numerics, in Control of Partial Differential Equations, edited by P.M. Cannarsa, J.M. Coron. Lecture Notes in Mathematics, CIME Subseries. Springer, New York (2012) 245–340. [Google Scholar]
  11. S. Ervedoza and E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375–1401. [Google Scholar]
  12. R. Glowinski, J.-L. Lions and J. He, Exact and approximate controllability for distributed parameter systems: a numerical approach. Vol. 117 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2008). [Google Scholar]
  13. R. Glowinski, C. H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76. [Google Scholar]
  14. M. Lazar and E. Zuazua, Averaged control and observation of parameter depending wave equations. C. R. Math. Acad. Sci. Paris 352 (2014) 497–502. [Google Scholar]
  15. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systems distribués. Tome 1. Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Masson, Paris (1988). [Google Scholar]
  16. J. Lohéac and E. Zuazua, Averaged controllability of parameter dependent conservative semigroups. J. Differ. Equ. 262 (2017) 1540–1574. [Google Scholar]
  17. J. Lohéac and E. Zuazua, From average to simultaneous controllability. Ann. Fac. Sci. Toulouse, Math. Ser. 6 25 (2016) 785–828. [Google Scholar]
  18. Q. Lü and E. Zuazua, Averaged controllability for random evolution partial differential equations. J. Math. Pures Appl. 105 (2016) 367–414. [Google Scholar]
  19. J. Martínez-Frutos and F. Periago Esparza Optimal control of PDEs under uncertainty. Springer Briefs in Mathematics (2018) DOI: 10.1007/978-3-319-98210-6. [Google Scholar]
  20. S. Micu and E. Zuazua, An introduction to the controllability of partial differential equations, in Quelques questions de théorie du contrôle, Collection Travaux en Cours, Hermann, edited by T. Sari (2005) 67–150. [Google Scholar]
  21. P.A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux derivées partielles. Dunond, Paris (1998). [Google Scholar]
  22. E. Zuazua, Stable observation of additive superpositions of partial differential equations. Syst. Control Lett. 93 (2016) 21–29. [Google Scholar]
  23. E. Zuazua, Propagation, observation, control and numerical approximation of waves. SIAM Rev. 47 (2005) 197–243. [Google Scholar]
  24. E. Zuazua, Averaged control. Automatica 50 (2014) 3077–3087. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.