Issue
ESAIM: COCV
Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 63
Number of page(s) 28
DOI https://doi.org/10.1051/cocv/2021062
Published online 22 June 2021
  1. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73–89. [Google Scholar]
  2. A. Bottois, J. Lemoine and A. Münch, Constructive exact control of semilinear multi-dimensional wave equations. Preprint. arXiv:2101.06446. [Google Scholar]
  3. F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d’Analyse Numérique, volume 41 of ESAIM Proc.. EDP Sci., Les Ulis (2013) 15–58. [Google Scholar]
  4. F. Boyer and J. Le Rousseau Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 1035–1078. [Google Scholar]
  5. C. Carthel, R. Glowinski and J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach. J. Optim. Theory Appl. 82 (1994) 429–484. [Google Scholar]
  6. T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1998). Translated from the 1990 French original by Yvan Martel and revised by the authors. [Google Scholar]
  7. P.G. Ciarlet, The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. [Google Scholar]
  8. J.-M. Coron, Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. [Google Scholar]
  10. P. Deuflhard, Newton methods for nonlinear problems. Vol. 35 of Springer Series in Computational Mathematics. Springer, Heidelberg (2011). Affine invariance and adaptive algorithms, First softcover printing of the 2006 corrected printing. [Google Scholar]
  11. T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 1–41. [Google Scholar]
  12. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1399–1446. [Google Scholar]
  13. E. Fernández-Cara and A. Münch, Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods. Math. Control Relat. Fields 2 (2012) 217–246. [Google Scholar]
  14. E. Fernández-Cara and A. Münch, Strong convergent approximations of null controls for the 1D heat equation. SeMA J. 61 (2013) 49–78. [Google Scholar]
  15. E. Fernández-Cara and A. Münch, Numerical exact controllability of the 1D heat equation: duality and Carleman weights. J. Optim. Theory Appl. 163 (2014) 253–285. [Google Scholar]
  16. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583–616. [Google Scholar]
  17. A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, volume 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  18. F. Hecht, New development in Freefem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  19. S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett. 55 (2006) 597–609. [Google Scholar]
  20. K. Le Balc’h Global null-controllability and nonnegative-controllability of slightly superlinear heat equations. J. Math. Pures Appl. 135 (2020) 103–139. [Google Scholar]
  21. J. Lemoine and A. Münch, Constructive exact controls for semilinear one-dimensional heat equations. Preprint. arXiv:2103.09640. [Google Scholar]
  22. J. Lemoine and A. Münch, A fully space-time least-squares method for the unsteady Navier-Stokes system. Preprint. arXiv:1909.05034. In revision in J. of Mathematical Fluid Mechanics. [Google Scholar]
  23. J. Lemoine and A. Münch, Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method. Numer. Math. 147 (2021) 349–391. [Google Scholar]
  24. J. Lemoine, A. Münch and P. Pedregal, Analysis of continuous H−1-least-squares approaches for the steady Navier-Stokes system. Appl. Math. Optim. 83 (2021) 461–488. [Google Scholar]
  25. A. Münch, A least-squares formulation for the approximation of controls for the Stokes system. Math. Control Signals Syst. 27 (2015) 49–75. [Google Scholar]
  26. A. Münch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach. Eur. J. Appl. Math. 25 (2014) 277–306. [Google Scholar]
  27. A. Münch and D.A. Souza, A mixed formulation for the direct approximation of L2 -weighted controls for the linear heat equation. Adv. Comput. Math. 42 (2016) 85–125. [Google Scholar]
  28. A. Münch and E. Trélat, Constructive exact control of semilinear 1d wave equations by a least-squares approach. Preprint. arXiv:2011.08462. [Google Scholar]
  29. A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Probl. 26 (2010) 085018. [Google Scholar]
  30. P. Saramito, A damped Newton algorithm for computing viscoplastic fluid flows. J. Non-Newton. Fluid Mech. 238 (2016) 6–15. [Google Scholar]
  31. E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109–129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.