Issue
ESAIM: COCV
Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 83
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2021079
Published online 27 July 2021
  1. R. Alonso, I.M. Gamba and M.-B. Tran, The Cauchy problem and BEC stability for the quantum Boltzmann-condensation system for bosons at very low temperature. Preprint arXiv:1609.07467 (2016). [Google Scholar]
  2. D.F. Anderson, A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71 (2011) 1487–1508. [Google Scholar]
  3. D.F. Anderson, G. Craciun and T.G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72 (2010) 1947–1970. [PubMed] [Google Scholar]
  4. D. Angeli, P. De Leenheer and E.D. Sontag, Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. SIAM J. Appl. Math. 71 (2011) 128–146. [Google Scholar]
  5. L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations: a kinetic model. Commun. Math. Phys. 310 (2012) 765–788. [Google Scholar]
  6. L. Arkeryd and A. Nouri, A Milne problem from a Bose condensate with excitations. Kinet. Relat. Models 6 (2013) 671–686. [Google Scholar]
  7. L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations: a two-component space-dependent model close to equilibrium. J. Stat. Phys. 160 (2015) 209–238. [Google Scholar]
  8. M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun. Math. Sci. 7 (2009) 867–900. [Google Scholar]
  9. N. Bernhoff, Half-space problems for a linearized discrete quantum kinetic equation. J. Stat. Phys. 159 (2015) 358–379. [Google Scholar]
  10. N. Bernhoff, Boundary layers for discrete kinetic models: multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic Related Models 10 (2017) 925. [Google Scholar]
  11. L. Boltzmann, Neuer Beweis zweier Satze uber das Warmegleichgewicht unter mehratomigen Gas-molekulen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien (1887) 153–164. [Google Scholar]
  12. S. Cai and X. Lu, The spatially homogeneous Boltzmann equation for Bose-Einstein particles: rate of strong convergence to equilibrium. Preprint arXiv:1808.04038 (2018). [Google Scholar]
  13. G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions. SIAM J. Appl. Algebra Geometry 3 (2019) 87–106. [Google Scholar]
  14. G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture. Submitted.. [Google Scholar]
  15. G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels, Toric dynamical systems. J. Symbolic Comput. 44 (2009) 1551–1565. [Google Scholar]
  16. G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math. 65 (2005) 1526–1546. [Google Scholar]
  17. G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems. SIAM J. Appl. Math. 73 (2013) 305–329. [Google Scholar]
  18. M. Escobedo and M.-B. Tran, Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic Related Models 8 (2015) 493–531. [Google Scholar]
  19. M. Escobedo and J.J.L. Velázquez, Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. 200 (2015) 761–847. [Google Scholar]
  20. M. Feinberg, Lectures on chemical reaction networks. Written version of lectures given at the Mathematical Research Center, University of Wisconsin, Madison WI, 1979. Available at http://www.crnt.osu.edu/LecturesOnReactionNetworks. [Google Scholar]
  21. M. Feinberg, Complex balancing in general kinetic systems. Arch. Ratl. Mech. Anal. 49 (1972/73) 187–194. [Google Scholar]
  22. M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ratl. Mech. Anal. 132 (1995) 311–370. [Google Scholar]
  23. P. Germain, A.D. Ionescu and M.-B. Tran, Optimal local well-posedness theory for the kinetic wave equation. J. Funct. Anal. 279 (2020) 108570. [Google Scholar]
  24. M. Gopalkrishnan, E. Miller and A. Shiu, A geometric approach to the global attractor conjecture. SIAM J. Appl. Dyn. Syst. 13 (2014) 758–797. [Google Scholar]
  25. A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed gases at finite temperatures. Cambridge University Press, Cambridge (2009). [Google Scholar]
  26. A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed gases at finite temperatures. Cambridge University Press, Cambridge (2009). [Google Scholar]
  27. J. Gunawardena, Chemical reaction network theory for in-silico biologists. Lecture notes available online at http://vcp.med.harvard.edu/papers.html (2003). [Google Scholar]
  28. E.D. Gust and L.E. Reichl, Collision integrals in the kinetic equations of dilute Bose-Einstein condensates. Preprint arXiv:1202.3418 (2012). [Google Scholar]
  29. E.D. Gust and L.E. Reichl, Relaxation rates and collision integrals for Bose-Einstein condensates. Phys. Rev. A 170 (2013) 43–59. [Google Scholar]
  30. F. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ratl. Mech. Anal. 49 (1972/73) 172–186. [Google Scholar]
  31. F. Horn, The dynamics of open reaction systems. In Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974). SIAM–AMS Proceedings, Vol. VIII. Amer. Math. Soc., Providence, R.I. (1974) 125–137. [Google Scholar]
  32. F. Horn and R. Jackson, General mass action kinetics. Arch. Ratl. Mech. Anal. 47 (1972) 81–116. [Google Scholar]
  33. S. Jin and M.-B. Tran, Quantum hydrodynamic approximations to the finite temperature trapped Bose gases. Physica D 380 (2018) 45–57. [Google Scholar]
  34. T.R. Kirkpatrick and J.R. Dorfman, Transport theory for a weakly interacting condensed Bose gas. Phys. Rev. A 28 (1983) 2576–2579. [Google Scholar]
  35. T.R. Kirkpatrick and J.R. Dorfman, Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58 (1985) 301–331. [Google Scholar]
  36. X. Lu, On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles. J. Statist. Phys. 116 (2004) 1597–1649. [Google Scholar]
  37. X. Lu, The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119 (2005) 1027–1067. [Google Scholar]
  38. X. Lu, The Boltzmann equation for Bose-Einstein particles: condensation in finite time. J. Stat. Phys. 150 (2013) 1138–1176. [Google Scholar]
  39. T.T. Nguyen and M.-B. Tran, Uniform in time lower bound for solutions to a quantum Boltzmann equation of bosons. Arch. Ratl. Mech. Anal. 231 (2019) 63–89. [Google Scholar]
  40. L.W. Nordheim, Transport phenomena in Einstein–Bose and Fermi–Dirac gases. Proc. Roy. Soc. London A 119 (1928) 689. [Google Scholar]
  41. Y. Pomeau and M.-B. Tran, Vol. 967 of Statistical Physics of Non Equilibrium Quantum Phenomena. Springer Nature (2019). [Google Scholar]
  42. L.E. Reichl, A modern course in statistical physics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (2016) fourth edition. [Google Scholar]
  43. L.E. Reichl and E.D. Gust, Transport theory for a dilute Bose-Einstein condensate. J. Low Temp. Phys. 88 (2013) 053603. [Google Scholar]
  44. L.E. Reichl and M.-B. Tran, A kinetic equation for ultra-low temperature Bose–Einstein condensates. J. Phys. A: Math. Theor. 52 (2019) 063001. [Google Scholar]
  45. A. Sofferand M.-B. Tran, On coupling kinetic and Schrodinger equations. J. Differ. Equ. 265 (2018) 2243–2279. [Google Scholar]
  46. A. Sofferand M.-B. Tran, On the dynamics of finite temperature trapped Bose gases. Adv. Math. 325 (2018) 533–607. [Google Scholar]
  47. H. Spohn, Kinetics of the Bose-Einstein condensation. Physica D 239 (2010) 627–634. [Google Scholar]
  48. M.-B. Tran, G. Craciun, L.M. Smith and S. Boldyrev, A reaction network approach to the theory of acoustic wave turbulence. J. Differ. Equ. 269 (2020) 4332–52. [Google Scholar]
  49. M.-B. Tran and Y. Pomeau, Boltzmann-type collision operators for Bogoliubov excitations of Bose-Einstein condensates: a unified framework. Phys. Rev. E 101 (2020) 032119. [PubMed] [Google Scholar]
  50. M.-B. Tran and Y. Pomeau, On a thermal cloud - Bose-Einstein condensate coupling system. Eur. Phys. J. Plus 136 (2021) 502. [Google Scholar]
  51. E.A. Uehling and G.E. Uhlenbeck, On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Phys. Rev. 43 (1933) 552–561. [Google Scholar]
  52. S. M’etens Y. Pomeau, M.A. Brachet and S. Rica, Théorie cinétique d’un gaz de Bose dilué avec condensat. C. R. Acad. Sci. Paris Ser. IIb M’ec. Phys. Astr. 327 (1999) 791–798. [Google Scholar]
  53. P.Y. Yu and G. Craciun, Mathematical analysis of chemical reaction systems. Israel J. Chem. 58 (2018) 733–741. [Google Scholar]
  54. E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116 (1999) 277–345. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.