Volume 27, 2021
Special issue in honor of Enrique Zuazua's 60th birthday
Article Number 82
Number of page(s) 41
Published online 26 July 2021
  1. E. Andreou and G. Dassios, Dissipation of energy for magnetoelastic wavec in a conductive medium. Quart. Appl. Math. 55 (1997) 23–39. [CrossRef] [Google Scholar]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 305 (1992) 1024–1065. [CrossRef] [MathSciNet] [Google Scholar]
  3. N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. de l’École Normale Supérieure (4) 34 (2001) 817–870. Mesures de défaut de compacité, application au système de Lamé. A paraître aux Annales de L’Ecole Normale Supérieure (1999). [CrossRef] [Google Scholar]
  4. N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. (French). Comptes Rendus de l’Académie des Sciences Paris Sér. I Math. 325 (1997) 749–752. [Google Scholar]
  5. R.C. Charão, J.C. Oliveira and G. Perla Menzala Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discr. Continu. Dyn. Syst. 25 (2009) 797–821. [CrossRef] [Google Scholar]
  6. R.C. Charão, J.C. Oliveira and G. Perla Menzala Decay rates of magnetoelastic waves in an unbounded conductive medium. Electr. J. Differ. Equ. 2011 (2011) paper no. 127, 14 p. [CrossRef] [Google Scholar]
  7. C.R. da Luz and J.C. Oliveira, Asymptotic behavior of solutions for the magneto-thermo-elastic system in ℝ3. J. Math. Anal. Appl. 432 (2015) 1200–1215. [CrossRef] [Google Scholar]
  8. M. de Lima Santos and J.E. Muñoz Rivera, Polynomial stability to three dimensional magnetoelasticity. Acta Appl. Math. 76 (2003) 265–281. [CrossRef] [Google Scholar]
  9. T. Duyckaerts, Stabilization of the linear system of magnetoelasticity. Preprint arXiv:0407257 (2004). [Google Scholar]
  10. P. Gérard, Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794. [CrossRef] [Google Scholar]
  11. L. Hörmander, The analysis of linear partial differential operators. III. Vol. 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1994). [Google Scholar]
  12. G. Lebeau, Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), vol. 19 of Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht (1996) 73–109. [Google Scholar]
  13. G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86 (1997) 465–491. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Ratl. Mech. Anal. 141 (1998) 297–329. [Google Scholar]
  15. G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ratl. Mech. Anal. 148 (1999) 179–231. [CrossRef] [MathSciNet] [Google Scholar]
  16. T.F. Ma, J.M. Rivera, H.P. Oquendo and F.M.S. Suárez, Polynomial stabilization of magnetoelastic plates. IMA J. Appl. Math. 79 (2014) 241–253. [CrossRef] [Google Scholar]
  17. R. Melrose and J. Sjöstrand, Singularities of boundary value problems I. Commun. Pure Appl. Math. 16 (1991) 1761–1794. [Google Scholar]
  18. J.E. Muñoz Rivera and R. Racke, Polynomial stability in two-dimensional magnetoelasticity. IMA J. Appl. Math. 66 (2001) 269–283. [CrossRef] [Google Scholar]
  19. J.E. Muñoz Rivera and R. Racke, Magneto-thermo-elasticity. Large-time behavior for linear systems. Adv. Differ. Equ. 6 (2001) 359–384. [Google Scholar]
  20. G. Perla Menzala and E. Zuazua, Energy decay of magnetoelastic waves in a bounded conductive medium. Asymp. Anal. 18 (1998) 349–362. [Google Scholar]
  21. R. Quintanilla and R. Racke, Stability in thermoelasticity of type III. Discr. Continu. Dyn. Syst. Ser. B 3 (2003) 383–400. [Google Scholar]
  22. L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinbur. 115-A (1990) 193–230. [Google Scholar]
  23. R. Temam, Navier-Stokes equations. Studies in mathematics and its applications, North-Holland 1979. [Google Scholar]
  24. X. Zhang, and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math. 5 (2003) 25–83. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.