Issue
ESAIM: COCV
Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 36
Number of page(s) 13
DOI https://doi.org/10.1051/cocv/2021038
Published online 30 April 2021
  1. A. Alvino, P.L. Lions and G. Trombetti, Comparison results for elliptic and parabolic equations via symmetrization: a new approach. Differ. Integral Equations 4 (1991) 25–50. [Google Scholar]
  2. M. van den Berg and G. Buttazzo, On capacity and torsional rigidity. Bull. Lond. Math. Soc. 53 (2021) 347–359. [Google Scholar]
  3. M. van den Berg, G. Buttazzo and A. Pratelli, On the relations between principal eigenvalue and torsional rigidity. To appear in: Commun. Contemp. Math. (2020). https://doi.org/10.1142/S0219199720500935. [Google Scholar]
  4. M. van den Berg, G. Buttazzo and B. Velichkov, Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity, in New Trends in Shape Optimization. Birkhäuser Verlag, Basel (2015) 19–41. [Google Scholar]
  5. M. van den Berg, V. Ferone, C. Nitsch and C. Trombetti, On Pólya’s inequality for torsional rigidity and first Dirichlet eigenvalue. Integral Equations Oper. Theory 86 (2016) 579–600. [Google Scholar]
  6. H.J. Brascamp, H. Lieb and J.M. Luttinger, general rearrangement inequality for multiple integrals. J. Funct. Anal. 17 (1974) 227–237. [Google Scholar]
  7. L. Brasco, On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique. COCV 20 (2014) 315–338. [CrossRef] [EDP Sciences] [Google Scholar]
  8. L. Briani, G. Buttazzo and F. Prinari, Some inequalities involving perimeter and torsional rigidity. To appear in: Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09727-7. [Google Scholar]
  9. F. Brock, Continuous Steiner-symmetrization. Math. Nachr. 172 (1995) 25–48. [Google Scholar]
  10. F. Brock, Continuous rearrangement and symmetry of solutions of elliptic problems. Proc. Indian Acad. Sci. 110 (2000) 157–204. [Google Scholar]
  11. D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527–536. [Google Scholar]
  12. D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Equations 65 (2005). [Google Scholar]
  13. D. Bucur and A. Henrot, Stability for the Dirichlet problem under continuous steiner symmetrization. Potential Anal. 13 (2000) 127–145. [Google Scholar]
  14. I. Ftouhi and J. Lamboley, Blaschke-Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue. Preprint https://hal.archives-ouvertes.fr.. [Google Scholar]
  15. B. Kawohl, Rearrangements and convexity of level sets in PDE. Springer Lecture notes Math. 1150 (1985) 7–44. [Google Scholar]
  16. I. Lucardesi and D. Zucco, On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Preprint arxiv1910.04454. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.