Free Access
Volume 27, 2021
Article Number 20
Number of page(s) 19
Published online 26 March 2021
  1. A. Aurell and B. Djehiche, Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics. SIAM J. Control Optim. 56 (2018) 434–455. [Google Scholar]
  2. A. Aurell, R. Carmona, G. Dayanikli and M. Lauriere, Optimal incentives to mitigate epidemics: a Stackelberg mean field game approach. Preprint arXiv:2011.03105v1 (2020). [Google Scholar]
  3. M. Bardi and F.S. Priuli, Linear-quadratic N-person and mean-field games with ergodic cost. SIAM J. Control Optim. 52 (2014) 3022–3052. [Google Scholar]
  4. T. Başar and P. Bernhard, H-optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd ed. Birkhauser, Boston, MA (1995). [Google Scholar]
  5. C.T. Bauch and D.J.D. Earn, Vaccination and the theory of games. P. Natl. Acad. Sci. 101 (2004) 13391–4. [Google Scholar]
  6. A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013). [Google Scholar]
  7. W.A. van den Broek, J.C. Engwerda and J.M. Schumacher, Robust equilibria in indefinite linear-quadratic differential games. J. Optim. Theory Appl. 119 (2003) 565–595. [Google Scholar]
  8. M. Burger, M.D. Francesco, P.A. Markowich and M.T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Continuous Dyn. Syst. Ser. B 19 (2014) 1311–1333. [Google Scholar]
  9. P.E. Caines, Mean field games, in Encyclopedia of Systems and Control, edited by T. Samad and J. Baillieul. Springer-Verlag, Berlin (2014). [Google Scholar]
  10. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705–2734. [Google Scholar]
  11. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I-II. Springer (2018). [Google Scholar]
  12. R. Carmona and P. Wang, Finite-state contract theory with a principal and a field of agents. Preprint arXiv:1808.07942 (2018). [Google Scholar]
  13. P. Chan and R. Sircar, Fracking, renewables, and mean field games. SIAM Rev. 59 (2017) 588–615. [CrossRef] [Google Scholar]
  14. S. Cho, Mean-field game analysis of SIR model with social distancing. Preprint arXiv:2005.06758 (2020). [Google Scholar]
  15. R. Couillet, S.M. Perlaza, H. Tembine and M. Debbah, Electrical vehicles in the smart grid: a mean field game analysis. IEEE J. Sel. Area. Commun. 30 (2012) 1086–1096. [Google Scholar]
  16. T.E. Duncan and H. Tembine, Linear-quadratic mean-field-type games: a direct method. Games 9 (2018) 7. [Google Scholar]
  17. R. Elie, E. Hubert and G. Turinici, Contact rate epidemic control of COVID-19: an equilibrium view. Preprint arXiv:2004.08221 (2020). [Google Scholar]
  18. J. Engwerda, A numerical algorithm to find soft-constrained Nash equilibria in scalar LQ-games. Int. J. Control 79 (2006) 592–603. [Google Scholar]
  19. D. Firoozi and P.E. Caines, Mean field game ε-Nash equilibria for partially observed optimal execution problems in finance. Proc. the IEEE 55th Conference on Decision and Control (2016) 268–275. [Google Scholar]
  20. G. Freiling, A survey of nonsymmetric Riccati equations. Linear Algebra Appl. 351 (2002) 243–270. [Google Scholar]
  21. B. Gaujal, J. Doncel and N. Gast, Vaccination in a Large Population: Mean Field Equilibrium versus Social Optimum. In netgcoop’20. [Google Scholar]
  22. G. Gnecco, M. Sanguineti and M. Gaggero, Suboptimal solutions to team optimization problems with stochastic information structure. SIAM J. Control Optim. 22 (2012) 212–243. [Google Scholar]
  23. Y.C. Ho and K.C. Chu, Team decision theory and information structures in optimal control Part I. IEEE Trans. Automat. Control 17 (1972) 15–22. [Google Scholar]
  24. E. Hubert and G. Turinici, Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination. Ric. di Mat. 67 (2018) 227–246. [Google Scholar]
  25. J. Huang and M. Huang, Mean field LQG games with model uncertainty. Proc. 52nd IEEE International Conference on Decision and Control (2013) 3103–3108. [Google Scholar]
  26. J. Huang and M. Huang, Robust mean field linear-quadratic-Gaussian games with unknown L2 -disturbance. SIAM J. Control Optim. 55 (2017) 2811–2840. [Google Scholar]
  27. J. Huang, B. Wang and T. Xie, Social optima in leader-follower mean field linear quadratic control. ESAIM: COCV 27 (2021) S12. [EDP Sciences] [Google Scholar]
  28. M. Huang, P.E. Caines and R.P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. Proc. 42nd IEEE International Conference on Decision and Control (2003) 98–103. [Google Scholar]
  29. M. Huang, P.E. Caines and R.P. Malhamé, Social optima in mean-field LQG control: centralized and decentralized strategies. IEEE Trans. Automat. Contr. 57 (2012) 1736–1751. [Google Scholar]
  30. M. Huang and M. Zhou, Linear-quadratic mean field games: asymptotic solvability and relation to the fixed point approach. IEEE Trans. Automat. Contr. 65 (2020) 1397–1412. [Google Scholar]
  31. A.C. Kizilkale and R.P. Malhame, Collective target tracking mean field control for markovian jump-driven models of electric water heating loads. Proc. 19th IFAC World Congress, Cape Town, South Africa (2014) 1867–1972. [Google Scholar]
  32. D. Kremer and R. Stefan, Non-symmetric Riccati theory an linear quadratic Nash games. Proc. 15th Internat. Symp. Math. Theory Networks and Systems (MTNS), Univ, Notre Dame, USA (2014). [Google Scholar]
  33. A. Lachapelle and M.T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transport Res. B 45 (2011) 1572–1589. [Google Scholar]
  34. J. Lasry and P. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  35. L. Laguzet and G. Turinici, Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-2010 influenza A (H1N1) epidemic in France. Bull. Math. Biol. 77 (2015) 1955–1984. [Google Scholar]
  36. T. Li and J. Zhang, Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans. Automat. Contr. 53 (2008) 1643–1660. [Google Scholar]
  37. J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and their Applications, Lecture Notes in Math. Springer-Verlag (1999). [Google Scholar]
  38. J. Moon and T. Başar, Linear quadratic risk-sensitive and robust mean field games. IEEE Trans. Automat. Contr. 62 (2017) 1062–1077. [Google Scholar]
  39. H. Strube, Time-varying wave digital filters and vocal-tract models. IEEE International Conference on Acoustics, Speech, and Signal Processing (1982) 923–926. [Google Scholar]
  40. J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control Optim. 54 (2016) 2274–2308. [Google Scholar]
  41. T. Sung, S. Yoon and K. Kim, A mathematical model of hourly solar radiation in varying weather conditions for a dynamic simulation of the solar organic Rankine cycle. Energies 8 (2015) 7058–7069. [Google Scholar]
  42. H. Tembine, D. Bauso and T. Başar, Robust linear quadratic mean-field games in crowd-seeking social networks. Proc. 52nd IEEE International Conference on Decision and Control (2013) 3134–3139. [Google Scholar]
  43. B. Wang and J. Zhang, Mean field games for large population multiagent systems with Markov jump parameters. SIAM J. Control Optim. 50 (2012) 2308–2334. [Google Scholar]
  44. B. Wang and J. Zhang. Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters. SIAM J. Control Optim. 55 (2017) 429–456. [Google Scholar]
  45. B. Wang and J. Huang, Social optima in robust mean field LQG control. The 11th Asian Control Conference (ASCC), Gold Coast, QLD (2017) 2089–2094. [Google Scholar]
  46. B. Wang, J. Huang and J. Zhang, Social optima in robust mean field LQG control: from finite to infinite horizon. IEEE Trans. Automat. Contr. 57 (2012) 1736–1751. [Google Scholar]
  47. B. Wang and M. Huang, Mean field production output control with sticky prices: Nash and social solutions. Automatica 100 (2019) 590–598. [Google Scholar]
  48. B. Wang, H. Zhang and J. Zhang, Mean field linear quadratic control: uniform stabilization and social optimality. Automatica 121 (2020) 109088. [Google Scholar]
  49. G.Y. Weintraub, C.L. Benkard and B.V. Roy, Markov perfect industry dynamics with many firms. Econometrica 76 (2008) 1375–1411. [Google Scholar]
  50. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.