Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 19
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2021017
Published online 22 March 2021
  1. C. Benassi and M. Caselli, Lipschitz continuity results for obstacle problems. Rendiconti Lincei, Matematica e Applicazioni 31 (2020) 191–210. [Google Scholar]
  2. L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity. Commun. Pure Appl. Math. 73 (2020) 944–1034. [Google Scholar]
  3. V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with p, q-growth: a variational approach. Arch. Ration. Mech. Anal. 210 (2013) 219–267. [Google Scholar]
  4. L. Caffarelli, The regularity of elliptic and parabolic free boundaries. Bull. Am. Math. Soc. 82 (1976) 616–618. [Google Scholar]
  5. L.A. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680 (2013) 191–233. [Google Scholar]
  6. M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. XIII (2014) 1065–1089. [Google Scholar]
  7. M. Carozza, J. Kristensen and A. Passarelli di Napoli, On the validity of the Euler Lagrange system. Commun. Pure Appl. Anal. 14 (2018) 51–62. [Google Scholar]
  8. M. Caselli, A. Gentile and R. Giova, Regularity results for solutions to obstacle problems with Sobolev coefficients. J. Diff. Equ. 269 (2020) 8308–8330. [Google Scholar]
  9. I. Chlebicka and C. De Filippis, Removable sets in non-uniformly elliptic problems. Annali Mat. Pura Appl. 199 (2020) 619–649. . [Google Scholar]
  10. M. Colombo and G. Mingione, Regularity for double phase variational problems. Arch. Rat. Mech. Anal. 215 (2015) 443–496. [Google Scholar]
  11. G. Cupini, F. Giannetti, R. Giova and A. Passarelli di Napoli, Regularity results for vectorial minimizers of a class of degenerate convex integrals. J. Diff. Equ. 265 (2018) 4375–4416. [Google Scholar]
  12. G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with pq growth. Nonlinear Anal. 54 (2003) 591–616. [Google Scholar]
  13. G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems. Manuscr. Math. 137 (2012) 287–315. [Google Scholar]
  14. G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems. Contemp. Math. 595 (2013) 169–186. [Google Scholar]
  15. G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166 (2015) 1–22. [Google Scholar]
  16. C. De Filippis, Regularity results for a class of non-autonomous obstacle problems with (p, q)-growth. To appear J. Math. Anal. Appl. doi.org/10.1016/j.jmaa.2019.123450 (2019). [PubMed] [Google Scholar]
  17. C. De Filippis and G. Mingione, On the regularity of minima of non-autonomous functionals. J. Geom. Anal. 30 (2020) 1661–1723. [Google Scholar]
  18. C. De Filippis and G. Mingione, Lipschitz bounds and non autonomous integrals. Preprint arxiv.org/abs/2007.07469 (2020). [Google Scholar]
  19. C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations. J. Diff. Equ. 267 (2018) 547–586. [Google Scholar]
  20. M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity. Ann. Mat. Pura e Appl. 195 (2016) 1575–1603. [Google Scholar]
  21. M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz continuity for energy integrals with variable exponents. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 61–87. [Google Scholar]
  22. M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions. Adv. Calc. Var. 13 (2020) 279–300. [Google Scholar]
  23. M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems. Calc. Var. Partial Differ. Equ. 57 (2018) 115. [Google Scholar]
  24. M. Eleuteri and A. Passarelli di Napoli, Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. 194 (2020) 111434. [Google Scholar]
  25. A. Figalli, B. Krummel and X. Ros-Oton, On the regularity of the free boundary in the p-Laplacian obstacle problem. J. Differ. Equ. 263 (2017) 1931–1945. [Google Scholar]
  26. M. Fuchs, Variational inequalities for vector valued functions with non convex obstacles. Analysis 5 (1985) 223–238. [Google Scholar]
  27. M. Fuchs and G. Mingione, Full regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscripta Math. 102 (2000) 227–250. [Google Scholar]
  28. C. Gavioli, Higher differentiability for a class of obstacle problems with nonstandard growth conditions. Forum Matematicum 31 (2019) 1501–1516. [Google Scholar]
  29. R. Giova, Higher differentiability for n-harmonic systems with Sobolev coefficients. J. Differ. Equ. 259 (2015) 5667–5687. [Google Scholar]
  30. R. Giova and A. Passarelli di Napoli, Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients. Adv. Calc. Var. 12 (2019) 85–110. [Google Scholar]
  31. E. Giusti, Direct methods in the calculus of variations. World Scientific Publishing Co. (2003). [Google Scholar]
  32. P. Hariulehto and P. Hästö, Double phase image restoration. J. Math. Anal. Appl. 2020 (2020) 123832. [Google Scholar]
  33. J. Hirschand M. Schäffner, Growth conditions and regularity, an optimal local boundedness result. Commun. Contemp. Math. 2020 (2020) 2050029. [Google Scholar]
  34. P. Marcellini, Un example de solution discontinue d’un problème variationnel dans le cas scalaire. Preprint 11, Istituto Matematico “U. Dini”, Università di Firenze (1987). [Google Scholar]
  35. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105 (1989) 267–284. [Google Scholar]
  36. P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90 (1991) 1–30. [Google Scholar]
  37. P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105 (1993) 296–333. [Google Scholar]
  38. P. Marcellini, A variational approach to parabolic equations under general and p, q-growth conditions. Nonlinear Anal. (2019), DOI 10.1016/j.na.2019.02.010. [Google Scholar]
  39. A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients. Adv. Calc. Var. 7 (2014) 59–89. [Google Scholar]
  40. A. Passarelli di Napoli, Higher differentiability of solutions of elliptic systems with Sobolev coefficients: the case p = n = 2. Pot. Anal. 41 (2014) 715–735. [Google Scholar]
  41. A. Passarelli di Napoli, Regularity results for non-autonomous variational integrals with discontinuous coefficients. Atti Accad. Naz. Lincei, Rend. Lincei Mat. Appl. 26 (2015) 475–496. [Google Scholar]
  42. A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics. American Mathematical Society (2012). [Google Scholar]
  43. M.A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9 (2019) 710–728. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.