Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 60
Number of page(s) 46
DOI https://doi.org/10.1051/cocv/2021056
Published online 18 June 2021
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  2. W. Arendt and C.J.K Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 305 (1988) 837–852. [Google Scholar]
  3. F. Assous, P. Ciarlet Jr. and S. Labrunie, Mathematical foundations of computational electromagnetism . Appl. Math. Sci. 198 (2018). [Google Scholar]
  4. A. Back, T. Hattori, S. Labrunie, J.R. Roche and P. Bertrand, Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition. ESAIM: M2AN 49 (2015) 1239–1260. [EDP Sciences] [Google Scholar]
  5. H. Barucq and B. Hanouzet, Asymptotic behavior of solutions to Maxwell’s system in bounded domains with absorbing boundary Silver–Mïler’s condition on the exterior boundary. Asympt. Anal. 15 (1997) 25–40. [Google Scholar]
  6. A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478. [Google Scholar]
  7. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. Part I: An integration by parts formula in Lipschitz polyhedra. An integration by parts formula in Lipschitz polyhedra. Math. Meth. Appl. Sci. 24 (2001) 9–30. [Google Scholar]
  8. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31–48. [Google Scholar]
  9. T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations. Vol. 13 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (1998). [Google Scholar]
  10. P.G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation. Masson Paris Milan Barcelone Mexico (1988). [Google Scholar]
  11. M. Eller, J. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comput. Appl. Math. 21 (2002) 135–165. [Google Scholar]
  12. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Meth. App. Sci. 7 (1997) 957–991. [Google Scholar]
  13. T. Hattori, Décomposition de domaine pour la simulation Full-Wave dans un plasma froid. Thèse, Université de Lorraine (2014). http://docnum.univ-lorraine.fr/public/DDOC_T_2014_0380_HATTORI.pdf. [Google Scholar]
  14. F.L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. [Google Scholar]
  15. V. Komornik, Boundary stabilization, observation and control of Maxwell’s equations. PanAmer. Math. J. 4 (1994) 47–61. [Google Scholar]
  16. S. Labrunie and I. Zaafrani, Dynamique d’un plasma magnétique froid. Prépublication HAL no. 01572067, version 2, 2017. Online: https://hal.archives-ouvertes.fr/hal-01572067v2/document. [Google Scholar]
  17. Y.I. Lyubich and Q.P. Vu, Asymptotic stability of linear differential equations in Banach spaces. Studia Math. 88 (1988) 37–42. [Google Scholar]
  18. S. Nicaise, Stabilization and asymptotic behavior of dispersive medium models. Syst. Control Lett. 61 (2012), 638–648. [Google Scholar]
  19. S. Nicaise, Stabilization of a Drude / vacuum model. J. Anal. Appl. 37 (2018) 349–375. [Google Scholar]
  20. S. Nicaise and C. Pignotti, Boundary stabilization of Maxwell?s equations with space-time variable coefficients. ESAIM: COCV 9 (2003) 563–578. [EDP Sciences] [Google Scholar]
  21. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag (1983). [Google Scholar]
  22. K.D. Phung, Contrôle et stabilisation d’ondes électromagnétiques. ESAIM: COCV 5 (2000) 87–137. [CrossRef] [EDP Sciences] [Google Scholar]
  23. J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857. [Google Scholar]
  24. T.H. Stix, Waves in plasmas. American Institute of Physics, New York (1992). [Google Scholar]
  25. J. Viquerat, M. Klemm, S. Lanteri, and C. Scheid, Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell’s equations. Technical Report 8298, INRIA (2013). https://hal.inria.fr/hal-00819758v2/document. [Google Scholar]
  26. C. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2 (1980) 12–25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.