Issue
ESAIM: COCV
Volume 27, 2021
Special issue in the honor of Enrique Zuazua's 60th birthday
Article Number 61
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2021058
Published online 18 June 2021
  1. H. Amann, Linear and quasilinear parabolic problems. Vol. 1. Birkhäuser, Boston (1995). [CrossRef] [Google Scholar]
  2. H. Amann, Linear parabolic problems involving measures. Rev. R. Acad. Cien. Serie A. Mat. 95 (2001) 85–119. [Google Scholar]
  3. Ch. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Jpn. Acad. Ser. A Math. Sci. 67 (1991) 171–175. [Google Scholar]
  4. P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for second-order, divergence form operators with mixed boundary conditions on Lp. J. Evol. Equ. 15 (2015) 165–208. [Google Scholar]
  5. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Springer, New York (2013). [Google Scholar]
  6. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2011). [Google Scholar]
  7. E. Casas and K. Kunisch, Optimal control of the 2d stationary Navier-Stokes equations with measure valued controls. SIAM J. Control Optim. 57 (2019) 1328–1354. [Google Scholar]
  8. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Mat. Semin. Univ. Padova 31 (1961) 308–340. [Google Scholar]
  9. K. Disser, A.F.M. ter Elst and J. Rehberg, On maximal parabolic regularity for non-autonomous parabolic operators. J. Differ. Equ. 262 (2017) 2039–2072. [Google Scholar]
  10. R. Farwig, G.P. Galdi and H. Sohr, Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of ℝ2. J. Differ. Equ. 227 (2006) 564–580. [Google Scholar]
  11. D. Fujiwara, Lp-theory for characterizing the domain of the fractional powers of − Δ in the half space. J. Fac. Sci. Univ. Tokyo Sect. I 15 (1968) 169–177. [Google Scholar]
  12. G.P. Galdi, C.G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W−1∕q,q. Math. Ann. 331 (2005) 41–74. [Google Scholar]
  13. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York (2011). [Google Scholar]
  14. M. Geissert, M. Hess, M. Hieber, C. Schwarz and K. Stavrakidis, Maximal lp-lq-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12 (2010) 47–60. [Google Scholar]
  15. Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces. Arch. Ratl. Mech. Anal. 89 (1985) 251–265. [Google Scholar]
  16. Y. Giga and H. Sohr, Abstract Lp estimatesfor the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991) 72–94. [Google Scholar]
  17. M. Hieber and J. Saal, The Stokes equation in the Lp-setting: well-posedness and regularity properties. In Handbook of mathematical analysis in mechanics of viscous fluids. Springer, Cham (2018) 117–206. [Google Scholar]
  18. H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations. Arch. Ratl. Mech. Anal. 193 (2009) 117–152. [Google Scholar]
  19. P.C. Kunstmann and L. Weis, New criteria for the H-calculus and the Stokes operator on bounded Lipschitz domains. J. Evol. Equ. 17 (2017) 387–409. [Google Scholar]
  20. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12 (1933) 1–82. [Google Scholar]
  21. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969). [Google Scholar]
  22. J.L. Lions and E. Magenes, Problèmes aux Limites non Homogènes. Volume 1. Dunod, Paris (1968). [Google Scholar]
  23. A. Noll and J. Saal, H-calculus for the Stokes operator on Lq-spaces. Math. Z. 244 (2003) 651–688. [Google Scholar]
  24. D. Serre, Équations de Navier-Stokes stationnaries avec données peu regulières. Ann. Sci. Norm. Sup. Pisa 10 (1983) 543–559. [Google Scholar]
  25. Z. Shen, Resolvent estimates in Lp for the Stokes operator in Lipschitz domains. Arch. Ratl. Mech. Anal. 205 (2012) 395–424. [Google Scholar]
  26. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  27. H. Sohr, The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2001). [Google Scholar]
  28. R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1979). [Google Scholar]
  29. P. Tolksdorf, On the Lp-theory of the Navier-Stokes equations on Lipschitz domains. Ph.D. thesis, Darmstadt University (2017). [Google Scholar]
  30. P. Tolksdorf, On the Lp-theory of the Navier-Stokes equations on three-dimensional bounded Lipschitz domains. Math. Ann. 371 (2018) 445–460. [Google Scholar]
  31. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Berlin (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.