Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 105
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2021102
Published online 16 December 2021
  1. S.M. Aseev and A.I. Smirnov, Necessary first-order conditions for optimal crossing of a given region. Comput. Math. Model. 18 (2007) 397–419. [Google Scholar]
  2. J.-P. Aubin, Viability Theory, Systems & Control: Foundations & Applications. Birkhäuser Boston (1991). [Google Scholar]
  3. J.-P. Aubin, A.M. Bayen and P. Saint-Pierre, Viability Theory New Directions, second editions. Springer, Heidelberg (2011). [Google Scholar]
  4. G. Barles, A. Briani and E. Trélat, Value function for regional problems via dynamic programming and Pontryagin maximum principle. Math. Control Relat. Fields 8 (2018) 509–533. [Google Scholar]
  5. T. Bayen, K. Boumaza and A. Rapaport, Penalty function method for the minimal time crisis problem. ESAIM Proc. Surveys 71 (2021) 21–32. [Google Scholar]
  6. T. Bayen and L. Pfeiffer, Second-order analysis for the time crisis problem. J. Convex Anal. 27 (2020) 139–163. [Google Scholar]
  7. T. Bayen and A. Rapaport, About Moreau-Yosida regularization of the minimal time crisis problem. J. Convex Anal. 23 (2016) 263–290. [Google Scholar]
  8. T. Bayen and A. Rapaport, About the minimal time crisis problem. ESAIM Proc. Surveys 57 (2017) 1–11. [Google Scholar]
  9. T. Bayen and A. Rapaport, Minimal time crisis versus minimum time to reach a viability kernel: a case study in the prey-predator model. Optim. Control Appl. Meth. 40 (2019) 330–350. [Google Scholar]
  10. F.H. Clarke, Functional Analysis, Calculus of Variation, Optimal control. Vol. 264 of Graduate Texts in Mathematics. Springer, London (2013). [Google Scholar]
  11. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics. Springer (1998). [Google Scholar]
  12. A.V. Dmitruk, The hybrid maximum principle is a consequence of Pontryagin maximum principle. Syst. Control Lett. 57 (2008) 964–970. [Google Scholar]
  13. A.V. Dmitruk and A.M. Kaganovich, Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22 (2011) 180–215. [Google Scholar]
  14. A.V. Dmitruk and A.M. Kaganovich, Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete Contin. Dyn. Syst. 29 (2011) 523–545. [Google Scholar]
  15. L. Doyen and P. Saint-Pierre, Scale of viability and minimal time of crisis. Set-Valued Var. Anal. 5 (1997) 227–246. [Google Scholar]
  16. M. Garavello and B. Piccoli, Hybrid necessary principle. SIAM J. Control Optim. 43 (2005) 1867–1887. [Google Scholar]
  17. T. Haberkorn and E. Trélat, Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control Optim. 49 (2011) 1498–1522. [Google Scholar]
  18. L.S. Pontryagin, V.G. Boltyanskiy, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. The Macmillan Co., New York (1964). [Google Scholar]
  19. C. Silva and E. Trélat, Asymptotic approach on conjugate points for minimal time bang–bang controls. Syst. Control Lett. 59 (2010) 720–733. [Google Scholar]
  20. A. Smirnov, Necessary optimality conditions for a class of optimal control problems with discontinuous integrand. Proc. Steklov Inst. Math. 262 (2008) 213–230. [Google Scholar]
  21. Team Commands, Inria Saclay, BOCOP: an open source toolbox for optimal control. http://bocop.org. [Google Scholar]
  22. R. Vinter, Optimal Control, Systems and Control: Foundations and Applications. Birkhäuser, Boston (2000). [Google Scholar]
  23. M.I. Zelikin and V.F. Borisov, Theory of Chattering Control. Systems & Control: Foundations & Applications, Birkhäuser (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.