Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 104
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2021101
Published online 08 December 2021
  1. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). [Google Scholar]
  2. G. Barles, Quasi-variational inequalities and first-order Hamilton-Jacobi equations. Nonlinear Anal.: Theory, Methods Appl. 9 (1985) 131–148. [Google Scholar]
  3. G. Barles, Deterministic impluse control problems. SIAM J. Control Optim. 23 (1985) 419–432. [Google Scholar]
  4. C. Belak, S. Christensen and F.T. Seifried, A general verification result for stochastic impulse control problems. SIAM J. Control Optim. 55 (2019) 627–649. [Google Scholar]
  5. R. Bellma, Dynamic Programming. Princeton Univ. Press, Princeton (1957). [Google Scholar]
  6. A. Bensoussan and J.L. Lions, Nouvells formulation de problèmes de contrôle impulsonnel et applications. C. R. Acad. Sci. Paris 276 (1973) 1182–1192. [Google Scholar]
  7. A. Bensoussan and J.L. Lions, Impulse Control and Quasi-Variational Inequalities. Bordes, Paris (1984). [Google Scholar]
  8. A. Bensoussan and C.S. Tapiero, Impulsive control in management: prospects and applications. J. Optim. Theory Appl. 17 (1982) 419–442. [Google Scholar]
  9. M. Chahim, R.F. Hartl and P.M. Kort, A tutorial on the deterministic impulse control maximum principle: necessary and sufficient optimality conditions. Eur. J. Oper. Res. 219 (2012) 18–26. [Google Scholar]
  10. L. Chu, T. Kompas and Q. Grafton, Impulse controls and uncertainty in economics: method and application. Environ. Model. Softw. 65 (2015) 50–57. [Google Scholar]
  11. M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. AMS 277 (1983) 1–42. [Google Scholar]
  12. V. Dykhta and O. Samsonuk, Maximum principle for nonsmooth optimal impulse problems. Proc. IFAC Nonlinear Control Systems (2001) 1303–1307. [Google Scholar]
  13. B. El Asri, Deterministic minimax impulse control in finite horizon: the viscosity solution approach. ESAIM COCV 19 (2013) 63–77. [Google Scholar]
  14. N. El Farouq, Degenerate first-order quasi-variational inequalities: an approach to approximate the value function. SIAM J. Control Optim. 55 (2017) 2714–2733. [Google Scholar]
  15. N. El Farouq, G. Barles and P. Bernhard, Deterministic minimax impulse control. Appl. Math. Optim. 61 (2010) 353–378. [Google Scholar]
  16. X. Feng, Maximum principle for optimal control problems involving impulse controls with nonsmooth data. Stochastics 88 (2016) 1188–1206. [Google Scholar]
  17. W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1992). [Google Scholar]
  18. Y. Hu and J. Yong, Maximum principle for stochastic optimal impulse controls. Chin. Ann. Math. Ser. A, Suppl. 12 (1991) 109–114 (in Chinese). [Google Scholar]
  19. R. Korn, Some applications of impulse control in mathematical finance. Math. Methods Oper. Res. 50 (1999) 189–218. [Google Scholar]
  20. R. Korn, Y. Melnyk and F.T. Seifried, Stochastic impulse control with regime-switching dynamics. Eur. J. Oper. Res. 260 (2017) 1024–1042. [Google Scholar]
  21. R. Leander, S. Lenhart and V. Protopopescu, Optimal control of continuous systems with impusle controls. Optim. Control Appl. Meth. 36 (2015) 535–549. [Google Scholar]
  22. S.M. Lenhart, Viscosity solutions associated with impulse control problems for piecewise-deterministic process. Internat. J. Math. Math. Sci. 12 (1989) 145–157. [Google Scholar]
  23. X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995). [Google Scholar]
  24. J.L. Menaldi, Optimal impulse control problems for degenerate diffusion with jumps. Acta Math. Appl. 8 (1987) 165–198. [Google Scholar]
  25. J.L. Mendaldi and M. Robin, On some impulse control problems with constraint. SIAM J. Control Optim. 55 (2017) 3204–3225. [Google Scholar]
  26. A. Piunovskiy, A. Plakhov and M. Tumanov, Optimal impulse control os a SIR epidemic. Optim. Control Appl. Meth. 41 (2020) 448–468. [Google Scholar]
  27. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Misjcjenko, The Mathematical Theory of Optimal Processes. Interscience, New York (1962). [Google Scholar]
  28. R. Rempala and J. Zabczyk, On the maximum principle for Deterministic impulse control problems. J. Optim. Theory Appl. 59 (1988) 281–288. [Google Scholar]
  29. H.M. Soner and N. Touzi, Stochastic target problems, dynamic programming and viscosity solutions. SIAM J. Control Optim. 41 (2002) 404–424. [Google Scholar]
  30. H.J. Sussmann, Small-time local controllability and continuity of the optimal time function for linear systems. J. Optim. Theory Appl. 53 (1987) 281–296. [Google Scholar]
  31. S. Tang and J. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach. Stochastics Stochastics Reports 45 (1993) 145–176. [Google Scholar]
  32. N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs, 29, Springer, New York (2013). [Google Scholar]
  33. Z. Wu and F. Zhang, Maximum principle for stochastic recursive optimal control problems involving impusle controls. Abstr. Appl. Anal. (2012) Art. ID 709682. [Google Scholar]
  34. V. Yadav and S.N. Balakrishnan, Optimal impulse control of systems with control constraints and application to HIV treatment. Proc. Am. Control Conf . (2006) 4824–4829. [Google Scholar]
  35. J. Yong, Systems governed by ordinary differential equations with continuous, switching and impulse controls. Appl. Math. Optim. 20 (1989) 223–236. [Google Scholar]
  36. J. Yong, Zero-sum differential games involving impulse controls. Appl. Math. Optim. 29 (1994) 243–261. [Google Scholar]
  37. J. Yong, Differential Games: A Concise Introduction. World Scientific, Singapore (2015). [Google Scholar]
  38. J. Yong and P. Zhang, Necessary conditions of optimal impulse controls for distributed parameter systems. Bull. Aust. Math. Soc. 45 (1992) 305–326. [Google Scholar]
  39. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.