Open Access
Volume 28, 2022
Article Number 52
Number of page(s) 57
Published online 02 August 2022
  1. W.K. Allard, On boundary regularity for Plateau’s problem. Bull. Am. Math. Soc. 75 (1969) 522–523. [CrossRef] [Google Scholar]
  2. W.K. Allard, On the first variation of a varifold. Ann. Math. 95 (1972) 417–491. [CrossRef] [MathSciNet] [Google Scholar]
  3. W.K. Allard, On the first variation of a varifold: boundary behavior. Ann. Math. 101 (1975) 418–446. [CrossRef] [MathSciNet] [Google Scholar]
  4. F.J. Almgren, Jr. Almgren’s big regularity paper, volume 1 of World Scientific Monograph Series in Mathematics (2000). [Google Scholar]
  5. E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem. Invent. Math. 7 (1969) 243–268. [Google Scholar]
  6. J.E. Brothers, Existence and structure of tangent cones at the boundary of an area minimizing integral current. Indiana Univ. Math. J. 26 (1977) 1027–1044. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. De Lellis, Almgren’s Q-valued functions revisited. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II-IV: Invited Lectures. World Scientific (2010) 1910–1933. [Google Scholar]
  8. C. De Lellis and E. Spadaro, Multiple valued functions and integral currents. Preprint arXiv:1306.1188 (2013). [Google Scholar]
  9. C. De Lellis and E. Spadaro, Regularity of area minimizing currents I: gradient Lp estimates. Geometr. Funct. Anal. 24 (2014) 1831–1884. [CrossRef] [Google Scholar]
  10. C. De Lellis and E. Spadaro, Regularity of area minimizing currents II: center manifold. Ann. Math. 183 (2016) 499–575. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. De Lellis and E. Spadaro, Regularity of area minimizing currents III: blow-up. Ann. Math. 183 (2016) 577–617. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. De Lellis, G. De Philippis, J. Hirsch and A. Massaccesi, On the boundary behavior of mass-minimizing integral currents. Preprint arXiv:1809.09457 (2018). [Google Scholar]
  13. J. Douglas, Solution of the problem of Plateau. Trans. Am,. Math. Soc. 33 (1931) 263–321. [CrossRef] [Google Scholar]
  14. H. Federer, Geometric measure theory. Springer (1969). [Google Scholar]
  15. H. Federer and W.H. Fleming, Normal and integral currents. Ann. Math. 72 (1960) 458–520. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Gilbarg and N.S. Trudinger, Vol. 224 of Elliptic Partial Differential Equations of Second Order. Springer Science & Business Media (2001). [CrossRef] [Google Scholar]
  17. R.M. Hardt, On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand. Commun. Partial Differ. Equ. 2 (1977) 1163–1232. [CrossRef] [Google Scholar]
  18. R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented plateau problem. Ann. Math. 110 (1979) 439–486. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Pucci and J.B. Serrin, Vol. 73 of The maximum principle. Springer Science & Business Media (2007). [Google Scholar]
  20. T. Radó, On Plateau’s Problem. Ann. Math. 31 (1930) 457–469. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Schoen and L. Simon, Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34 (1981) 741–797. [CrossRef] [Google Scholar]
  22. J. Simons, Minimal varieties in Riemannian manifolds. Ann. Math. 88 (1968) 62–105. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Simon et al., Lectures on geometric measure theory. The Australian National University, Mathematical Sciences Institute, Centre for Mathematics & its Applications (1983). [Google Scholar]
  24. F. Trêves, Vol. 62 of Basic linear partial differential equations. Academic Press (1975). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.