Open Access
Volume 28, 2022
Article Number 51
Number of page(s) 35
Published online 02 August 2022
  1. A.L. Baison, A. Clop, R. Giova, J. Orbitg and A. Passarelli di Napoli, Fractional differentiability for solutions of nonlinear elliptic equations. Potential Anal. 46 (2017) 403–430. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase. Calc. Variat. 57 (2018). [Google Scholar]
  3. H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23 (1973-1974) 831–844. [CrossRef] [Google Scholar]
  4. L.A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities. J. Anal. Math. 37 (1980) 285–295. [CrossRef] [Google Scholar]
  5. H.J. Choe and J.L. Lewis, On the obstacle problem for quasilinear elliptic equations of p-Laplace type. SIAM J. Math. Anal. 22 (1991) 623–638. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Colombo and G. Mingione, Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015) 443–496. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Coscia, Regularity for minimizers of double phase functionals with mild transition and regular coefficients, J. Math. Anal. Appl. 501 (2021) 124569 [CrossRef] [Google Scholar]
  8. G. Cupini, N. Fusco and R. Petti, Holder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999) 578–597. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals. Arch. Rational Mech. Anal. 242 (2021) 973–1057. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Duzaar, Variational inequalities and harmonic mappings. J. Reine Angew. Math. 374 (1987) 39–60. [MathSciNet] [Google Scholar]
  11. F. Duzaar and M. Fuchs, Optimal regularity theorems for variational problems with obstacles. Manuscr. Math. 56 (1986) 209–234. [CrossRef] [Google Scholar]
  12. M. Eleuteri, Hôlder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 8 (2004) 129–157. [Google Scholar]
  13. M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems. Calc. Var. 57 (2018) 115. [CrossRef] [Google Scholar]
  14. M. Eleuteri and A. Passarelli di Napoli, Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. 194 (2020) 111434. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. la 7 (1963-1964) 91–140. [Google Scholar]
  16. I. Fonseca, J. Maly and G. Mingione, Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 72 (2004) 295–307. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Fuchs, Hôolder continuity of the gradient for degenerate variational inequalities. Nonlinear Anal. 15 (1990) 85–100. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Gavioli, Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions. Forum Math. 31 (2019) 1501–1516. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Gavioli, A priori estimates for solutions to a class of obstacle problems under p,q-growth conditions. J. Elliptic Parabolic Equ. 5 (2019) 325–347. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Giaquinta, Growth conditions and regularity, a counterexample. Manuscr. Math. 59 (1987) 245–248. [CrossRef] [Google Scholar]
  21. E. Giusti, Direct methods in the calculus of variations. World Scientific publishing Co., Singapore (2003). [Google Scholar]
  22. A.G. Grimaldi and E. Ipocoana, Higher fractional differentiability for solutions to a class of obstacle problems with nonstandard growth conditions. Adv. Calc. Var. (2022) doi: 10.1515/acv-2021-0074. [Google Scholar]
  23. D. Haroske, Envelopes and sharp embeddings of function spaces. Chapman and Hall CRC, Boca Raton (2006). [CrossRef] [Google Scholar]
  24. P. Koskela, D. Yang and Y. Zhou, Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226 (2011) 3579–3621. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, Cambridge (1980). [Google Scholar]
  26. J. Kristensen and G. Mingione, Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 180 (2006) 331–398. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Differ. Equ. 90 (1991) 1–30. [CrossRef] [Google Scholar]
  28. J. Ok, Regularity of !-minimizers for a class of functionals with non-standard growth. Calc. Var. PDE 56 (2017). [Google Scholar]
  29. G. Stampacchia, Formes bilineaires coercivitives sur les ensembles convexes. C.R. Acad. Sci. Paris 258 (1964) 4413–4416. [MathSciNet] [Google Scholar]
  30. X. Zhang and S. Zheng, Besov regularity for the gradients of solutions to non-uniformly elliptic obstacle problems. J. Math. Anal. Appl. 505 (2021). [Google Scholar]
  31. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 675–710. [MathSciNet] [Google Scholar]
  32. V.V. Zhikov, On some variational problems. Russ. J. Math. Phys. 5 (1997) 105–116. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.