Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 43
Number of page(s) 34
DOI https://doi.org/10.1051/cocv/2022027
Published online 29 June 2022
  1. C.T. Anh and V.M. Toi, Null controllability in large time of a parabolic equation involving the Grushin operator with an inverse-square potential. Nonlinear Differ. Equ. Appl. 23 (2016) 1–26. [Google Scholar]
  2. C.T. Anh and V.M. Toi, Null controllability of a parabolic equation involving the Grushin operator in some multi-dimensional domains. Nonlinear Anal.: Theory Methods Appl. 93 (2013) 181–196. [CrossRef] [Google Scholar]
  3. V. Barbu, A. Rascanu and G. Tessitore, Carleman estimate and controllability of linear stochastic heat equations. Appl. Math. Optim. 47 (2003) 97–120. [CrossRef] [MathSciNet] [Google Scholar]
  4. K. Beauchard, P. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. 16 (2014) 67–101. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Beauchard, P. Cannarsa and M. Yamamoto, Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type. Inverse Probl. 30 (2014) 025006. [CrossRef] [Google Scholar]
  6. K. Beauchard, L. Miller and M. Morancey, 2D Grushin-type equations: minimal time and null controllable data. J. Differ. Equ. 259 (2015) 5813–5845. [CrossRef] [Google Scholar]
  7. A. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of multidimentional inverse problems. Sov. Math. Doklady 24 (1981) 244–247. [Google Scholar]
  8. P. Cannarsa and R. Guglielmi, Null controllability in large time for the parabolic Grushin operator with singular potential. Geometric Control Theory and Sub-Riemannian Geometry, Springer International Publishing (2014) 87–102. [CrossRef] [Google Scholar]
  9. P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Cannarsa, P. Martinze and J. Vancostenoble, Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2015) 153–190. [Google Scholar]
  11. P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation. Inverse Problems 26 (2010) 105003(26pp). [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates. J. Differ. Equ. 260 (2016) 1314–1371. [CrossRef] [Google Scholar]
  13. X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Control Optim. 46 (2007) 1578–1614. [CrossRef] [MathSciNet] [Google Scholar]
  14. X. Fu, Q. Lu and X. Zhang, Carleman estimates for second order partial differential operators and applications, a unified approach. Springer (2019). [CrossRef] [Google Scholar]
  15. P. Gao, Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation. Bull. Austr. Math. Soc. 90 (2014) 283–294. [CrossRef] [Google Scholar]
  16. P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications. J. Differ. Equ. 260 (2016) 427–444. [CrossRef] [Google Scholar]
  17. P. Gao, M. Chen and Y. Li, Observability estimates and null controllability for forward and backward linear stochastic Kuramoto-Sivashinsky equations. SIAM J. Control Optim. 53 (2015) 475–500. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Gao, Global Carleman estimates for linear stochastic Kawahara equation and their applications. Math. Control Signals Syst. 28 (2016) 1–22. [CrossRef] [Google Scholar]
  19. O.Y. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003) 227–274. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Jiang, Y. Liu and M. Yamamoto, Inverse source problem for the hyperbolic equation with a time-dependent principal part. J. Differ. Equ. 262 (2017) 653–681. [CrossRef] [Google Scholar]
  21. M.V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht (2004). [CrossRef] [Google Scholar]
  22. M.V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21 (2013) 477–560. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Koenig, Non null controllability of the Grushin equation in 2D. Preprint arXiv:1701.06467 (2017). [Google Scholar]
  24. X. Liu, Global Carleman estimate for stochastic parabolic equations and its application. ESAIM: COCV 20 (2014) 823–839. [CrossRef] [EDP Sciences] [Google Scholar]
  25. X. Liu and Y. Yu, Carleman Estimates of some stochastic degenerate parabolic equations and application. SIAM J. Control Optim. 57 (2019) 3527–3552. [CrossRef] [MathSciNet] [Google Scholar]
  26. Q. Lu, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems. Inverse Probl. 28 (2012) 045008. [CrossRef] [Google Scholar]
  27. Q. Lu, Observability estimate for stochastic Schrödinger equations and its applications. SIAM J. Control Optim. 51 (2013) 121–144. [CrossRef] [MathSciNet] [Google Scholar]
  28. Q. Luö, Observability estimate and state observation problems for stochastic hyperbolic equations. Inverse Probl. 29 (2013) 095011(22pp). [CrossRef] [Google Scholar]
  29. Q. Luö and X. Zhang, Global uniqueness for an inverse stochastic hyperbolic problem with three unknowns. Commun. Pure Appl. Math. 68 (2015) 948–963. [CrossRef] [Google Scholar]
  30. Q. Luö and X. Zhang, Mathematical control theory for stochastic partial differential equations. Springer Nature Switzerland AG (2021). [Google Scholar]
  31. M. Morancey, About unique continuation for a 2D Grushin equation with potential having an internal singularity. Preprint arXiv:1306.5616 (2013). [Google Scholar]
  32. J.L. Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. [CrossRef] [EDP Sciences] [Google Scholar]
  33. J.C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differ. Equ. 66 (1987) 118–139. [CrossRef] [Google Scholar]
  34. S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48 (2009) 2191–2216. [Google Scholar]
  35. C. Wang and R. Du, Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms. SIAM J. Control Optim. 52 (2014) 1457–1480. [CrossRef] [MathSciNet] [Google Scholar]
  36. B. Wu and J. Yu, Hôlder stability of an inverse problem for a strongly coupled reaction-diffusion system. IMA J. Appl. Math. 82 (2017) 424–444. [MathSciNet] [Google Scholar]
  37. B. Wu, Y. Gao, Z. Wang and Q. Chen, Unique continuation for a reaction-diffusion system with cross diffusion. J. Inverse Ill-Posed Probl. 27 (2019) 511–525. [CrossRef] [MathSciNet] [Google Scholar]
  38. B. Wu, Q. Chen and Z. Wang, Carleman estimates for a stochastic degenerate parabolic equation and applications to null controllability and an inverse random source problem. Inverse Probl. 36 (2020) 075014. [CrossRef] [Google Scholar]
  39. M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse Probl. 25 (2009) 123013. [Google Scholar]
  40. Y. Yan, Carleman estimates for stochastic parabolic equations with Neumann boundary conditions and applications. J. Math. Anal. Appl. 457 (2018) 248–272. [CrossRef] [MathSciNet] [Google Scholar]
  41. G. Yuan, Determination of two kinds of sources simultaneously for a stochastic wave equation. Inverse Probl. 31 (2015) 085003. [CrossRef] [Google Scholar]
  42. X. Zhang, Carleman and observability estimates for stochastic wave equations. SIAM J. Math. Anal. 40 (2008) 851–868. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.