Open Access
Volume 28, 2022
Article Number 44
Number of page(s) 47
Published online 01 July 2022
  1. G. Allaire, Shape Optimization by the Homogenization Method, vol. 146 of Applied Mathematical Sciences. Springer, New York (2002). [CrossRef] [Google Scholar]
  2. A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, in W. Bao and Q. Du (editors), Multiscale modeling and analysis for materials simulation. Vol. 22 of Lect. Notes Series, Institute for Mathematical Sciences, National University of Singapore. World Sci. Publ. (2011) 197–272. [Google Scholar]
  3. H. Ben Dhia, Multiscale mechanical problems: the Arlequin method. C.R. Acad. Sci. Paris 12 (1998) 899–904. [Google Scholar]
  4. H. Ben Dhia, Further insights by theoretical investigations of the multiscale Arlequin method. Int. J. Multiscale Comput. Engng. 6 (2008) 215–232. [CrossRef] [Google Scholar]
  5. H. Ben Dhia and G. Rateau, The Arlequin method as a flexible engineering design tool. Int. J. Numer. Meth. Engng. 62 (2005) 1442–1462. [CrossRef] [Google Scholar]
  6. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York (1978). [Google Scholar]
  7. A. Bourgeat, M. Quintard and S. Whitaker, Eléments de comparaison entre la méthode d’homogénéisation et la méthode de prise de moyenne avec fermeture [Comparison between homogenization theory and volume averaging method with closure problem]. C. R. Acad. Sci. Paris, Série II 306 (1988) 463–466. [Google Scholar]
  8. D. Cioranescu and P. Donato, An introduction to homogenization. Vol. 17 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, New York (1999). [Google Scholar]
  9. R. Cottereau, Numerical strategy for unbiased homogenization of random materials. Int. J. Numer. Meth. Engng. 95 (2013) 71–90. [CrossRef] [Google Scholar]
  10. R. Cottereau, D. Clouteau, H. Ben Dhia and C. Zaccardi, A stochastic-deterministic coupling method for continuum mechanics. Comput. Methods Appl. Mech. Engrg. 200 (2011) 3280–3288. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27 (1991) 699–708. [CrossRef] [Google Scholar]
  12. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer (2015). [Google Scholar]
  13. O. Gorynina, C. Le Bris and F. Legoll, Some remarks on a coupling method for the practical computation of homogenized coefficients. SIAM J. Sci. Comput. 43 (2021) A1273–A1304. [CrossRef] [Google Scholar]
  14. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functional. Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  15. C. Le Bris, F. Legoll and S. Lemaire, On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: COCV 24 (2018) 1345–1380. [CrossRef] [EDP Sciences] [Google Scholar]
  16. C. Le Bris, F. Legoll and K. Li, Approximation grossière d’un problème elliptique à coefficients hautement oscillants [Coarse approximation of an elliptic problem with highly oscillatory coefficients]. C.R. Acad. Sci. Paris, Serie I 351 (2013) 265–270. [CrossRef] [Google Scholar]
  17. C. Le Bris, F. Legoll and A. Lozinski, MsFEM aè la Crouzeix-Raviart for highly oscillatory elliptic problems. Chin. Ann. Math. Ser. B 34 (2013) 113–138. [CrossRef] [Google Scholar]
  18. Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56 (2003) 892–925. [CrossRef] [Google Scholar]
  19. J.M. Melenk, Hp-Interpolation of nonsmooth functions and an application to hp-a posteriori error estimation. SIAM J. Numer. Anal. 43 (2005) 127–155. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Rateau, Méthode Arlequin pour les problèmes mécaniques multi-échelles: Applications à des problèmes de jonction et de fissuration de structures élancées, Ph.D. thesis, Ecole Centrale de Paris (2003). Available at [Google Scholar]
  21. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [CrossRef] [Google Scholar]
  22. L. Tartar, The general theory of homogenization - a personalized introduction. Vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin Heidelberg (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.