Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 14
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2022011
Published online 24 February 2022
  1. V. Alexéev, S. Fomine and V. Tikhomirov, Commande optimale, Mir, Moscow (1982). [Google Scholar]
  2. F. Ammar-Kodjha, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Araruna, B.S.V. Araújo and E. Fernández-Cara, Stackelberg-Nash null controllability for some linear and semilinear degenerate parabolic equations. Math. Control Signals Syst. 30 (2018) Art. 14, 31 pp. [Google Scholar]
  4. F. Araruna, E. Fernández-Cara, S. Guerrero and M.C. Santos, New results on the Stackelberg-Nash exact control of linear parabolic equations. Systems Control Lett. 104 (2017) 78–85. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Araruna, E. Fernández-Cara and M.C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM: COCV 21 (2015) 835–856. [CrossRef] [EDP Sciences] [Google Scholar]
  6. F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, Super-Besse, ESAIM Proc., EDP Sci., Les Ulis (2013). [Google Scholar]
  7. J.C. Cox and M. Rubinstein, Options Markets. Prentice-Hall, Englewood Cliffs, NJ (1985). [Google Scholar]
  8. J.I. Díaz, On the von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems. Rev. R. Acad. Cien., Serie A. Math. 96 (2002) 343–356. [Google Scholar]
  9. J.I. Díaz and J.-L. Lions, On the approximate controllability of Stackelberg-Nash strategies. Ocean circulation and pollution control: a mathematical and numerical investigation (Madrid, 1997). Springer, Berlin (2004) 17–27. [CrossRef] [Google Scholar]
  10. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [Google Scholar]
  11. A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations, Lecture Note Series 34. Research Institute of Mathematics, Seoul National University, Seoul (1996). [Google Scholar]
  12. I.V. Girsanov, Lectures on mathematical theory of extremum problem, Lecture notes in Economics and mathematical systems 67. Springer-Verlag, Berlin (1972). [CrossRef] [Google Scholar]
  13. F. Guillén-González, F.P. Marques-Lopes and M.A. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategiesfor Stokes equations. Proc. Amer. Math. Soc. 141 (2013) 1759–1773. [Google Scholar]
  14. O.Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.-L. Lions, Contrôle de Pareto de systèmes distribués. Le cas d’évolution. C.R. Acad. Sc. Paris, série I 302 (1986) 413–417. [Google Scholar]
  16. J.-L. Lions, Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4 (1994) 477–487. [CrossRef] [Google Scholar]
  17. Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM: COCV 19 (2013) 20–42. [CrossRef] [EDP Sciences] [Google Scholar]
  18. V. Pareto, Cours d’économie politique. Rouge, Laussane, Switzerland (1896). [Google Scholar]
  19. A.M. Ramos, R. Glowinski and J. Periaux, Pointwise control of the Burgers equation and related Nash equilibria problems: A computational approach. J. Optim. Theory Appl. 112 (2001) 499–516. [Google Scholar]
  20. A.M. Ramos, R. Glowinski and J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457–498. [CrossRef] [MathSciNet] [Google Scholar]
  21. S.M. Ross, An introduction to mathematical finance. Options and other topics. Cambridge University Press, Cambridge (1999). [Google Scholar]
  22. P. Wilmott, S. Howison, J. Dewynne, The mathematics of financial derivatives. Cambridge University Press, New York (1995). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.