Open Access
Volume 28, 2022
Article Number 13
Number of page(s) 23
Published online 17 February 2022
  1. A.D. Ames, X. Xu, J.W. Grizzle and P. Tabuada, Control Barrier Function Based Quadratic Programs with Application to Automotive Safety Systems (2018). [Google Scholar]
  2. J.P. Aubin, Viability Theory. Birkhauser Boston Inc., Cambridge, MA, USA (1991). [Google Scholar]
  3. J.P. Aubin and A. Cellina, Vol. 264 of Differential Inclusions: Set-Valued Maps and Viability Theory. Springer Science & Business Media (2012). [Google Scholar]
  4. J.P. Aubin and H. Frankowska, Set-valued Analysis. Springer Science & Business Media (2009). [CrossRef] [Google Scholar]
  5. A. Bacciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions. ESAIM: COCV 4 (1999) 361–376. [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Bacciotti and F. Ceragioli, Nonsmooth Lyapunov functions and discontinuous Carathéodory systems. IFAC Proc. 37 (2004) 841–845. [CrossRef] [Google Scholar]
  7. R.P. Boas and H.P. Boas, vol. 13 of A Primer of Real Functions, 4th edn., Mathematical Association of America (1996). [CrossRef] [Google Scholar]
  8. F. Clarke, Vol. 264 of Functional analysis, calculus of variations and optimal control. Springer Science & Business Media (2013). [CrossRef] [Google Scholar]
  9. F.H. Clarke, Vol. 5 of Optimization and Nonsmooth Analysis (1990). [CrossRef] [Google Scholar]
  10. F.H. Clarke and Y.S. Ledyaev, Mean value inequalities. Proc. Am. Math. Soc. 122 (1994) 1075–1083. [CrossRef] [Google Scholar]
  11. F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Autom. Control 42 (1997) 1394–1407. [CrossRef] [Google Scholar]
  12. F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Invariance, monotonicity, and applications, in Nonlinear analysis, differential equations and control. Springer (1999) 207–305. [Google Scholar]
  13. F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, vol. 178, Springer Science & Business Media (2008). [Google Scholar]
  14. F.H. Clarke, R.J. Stern and P.R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Can. J. Math. 45 (1993) 1167–1183. [CrossRef] [Google Scholar]
  15. U. Dini, Lezioni di analisi infinitesimale, vol. 1, 2. Fratelli Nistri (1907). [Google Scholar]
  16. P. Glotfelter, J. Cortés and M. Egerstedt, Nonsmooth barrier functions with applications to multi-robot systems. IEEE Control Syst. Lett. 1 (2017) 310–315. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Goebel, R.G. Sanfelice and A.R. Teel, Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press (2012). [Google Scholar]
  18. R. Kamalapurkar, W.E. Dixon and A.R. Teel, On reduction of differential inclusions and Lyapunov stability. ESAIM: COCV 26 (2020) 24. [CrossRef] [EDP Sciences] [Google Scholar]
  19. M. Maghenem, A. Melis and R.G. Sanfelice, Monotonicity Along Solutions to Constrained Differential Inclusions, in Proceeding of the 58th IEEE Conference on Decision and Control, Nice, France (2019). [Google Scholar]
  20. M. Maghenem and R.G. Sanfelice, Characterization of Safety and Conditional Invariance for Nonlinear Systems, in Proceedings of the 2019 American Control Conference (ACC), IEEE (2019) 5039–5044. [CrossRef] [Google Scholar]
  21. M. Maghenem and R.G. Sanfelice, Characterizations of Safety in Hybrid Inclusions via Barrier Functions, in Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’19, ACM, NY, USA (2019) 109–118. [Google Scholar]
  22. M. Maghenem and R.G. Sanfelice, Local Lipschitzness of Reachability Maps for Hybrid Systems with Applications to Safety, in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’20, Association for Computing Machinery, New York, NY, USA (2020). [Google Scholar]
  23. E. Michael, Continuous selections. I. Ann. Math. (1956) 361–382. [Google Scholar]
  24. S. Prajna, A. Jadbabaie and G.J. Pappas, A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52 (2007) 1415–1428. [CrossRef] [Google Scholar]
  25. R.T. Rockafellar and J.B.R. Wets, Vol. 317 of Variational Analysis. Springer Science & Business Media (1997). [Google Scholar]
  26. M.D. Rossa, R. Goebel, A. Tanwani and L. Zaccarian, Piecewise structure of Lyapunov functions and densely checked decrease conditions for hybrid Systems. Math. Control Signals and Syst. 33 (2021) 123–149. [CrossRef] [Google Scholar]
  27. R.G. Sanfelice, R. Goebel and A.R. Teel, Invariance principles for hybrid systems with connections to detectability and asymptotic stability. IEEE Trans. Autom. Control 52 (2007) 2282–2297. [CrossRef] [Google Scholar]
  28. E. Sontag and H. Sussmann, Nonsmooth control-Lyapunov functions, in vol. 3 of Proceedings of the 34th IEEE Conference on Decision and Control (CDC). IEEE (1995) 2799–2805. [Google Scholar]
  29. E.D. Sontag, A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21 (1983) 462–471. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Valadier, Entraînement unilatéral, lignes de descente, fonctions lipschitziennes non pathologiques. C.R. Acad. Sci. Paris Sér. I Math 8 (1989) 241–244. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.