Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 40
Number of page(s) 37
DOI https://doi.org/10.1051/cocv/2022034
Published online 29 June 2022
  1. B. Acciaio, J. Backhoff-Veraguas and R. Carmona, Extended mean field control problems: stochastic maximum principle and transport perspective. SIAM J. Control Optim. 57 (2019) 3666–3693. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Alasseur, I.B. Taher and A. Matoussi, An extended mean field game for storage in smart grids. J. Optim. Theory Appl. 184 (2020) 644–670. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Angiuli, C. Graves, H. Li, J.-F. Chassagneux, F. Delarue and R. Carmona, Cemracs 2017: numerical probabilistic approach to MFG. ESAIM: PS 65 (2019) 84–113. [CrossRef] [EDP Sciences] [Google Scholar]
  4. J. Badosa, E. Gobet, M. Grangereau and D. Kim, Day-ahead probabilistic forecast of solar irradiance: a Stochastic Differential Equation approach. Renewable Energy: Forecasting and Risk Management. Edited by P. Drobinski, M. Mougeot, D. Picard, R. Plougonven and P. Tankov, Springer Proceedings in Mathematics & Statistics (2018) 73–93. [Google Scholar]
  5. M. Basei and H. Pham, A weak martingale approach to linear-quadratic McKean–Vlasov stochastic control problems. J. Optim. Theory Appl. 181 (2019) 347–382. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Bellini, B. Klar, A. Muller and E.R. Gianin, Generalized quantiles as risk measures. Insurance: Math. Econ. 54 (2014) 41–48. [CrossRef] [Google Scholar]
  7. A. Bensoussan, Perturbation methods in optimal control. Wiley/Gauthier-Villars Series in Modern Applied Mathematics. Translated from the French by C. Tomson. John Wiley & Sons Ltd., Chichester (1988). [Google Scholar]
  8. B. Bibby, I. Skovgaard and M. Sorensen, Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 11 (2005) 191–220. [MathSciNet] [Google Scholar]
  9. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer Science+Business Media (2010). [Google Scholar]
  10. R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43 (2015) 2647–2700. [Google Scholar]
  11. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I-II. Springer (2018). [Google Scholar]
  12. P. Carpentier, J. Chancelier, M. De Lara and T. Rigaut, Algorithms for two-time scales stochastic optimization with applications to long term management of energy storage. HAL preprint hal-02013969 (2019). [Google Scholar]
  13. F. Delarue and G. Guatteri, Weak existence and uniqueness for forward-backward SDEs. Stoch. Process. Appl. 116 (2006) 1712–1742. [CrossRef] [Google Scholar]
  14. N. El Karoui, S. Peng and M. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Heymann, J. Bonnans, P. Martinon, F. Silva, F. Lanas and G. Jiménez-Estévez, Continuous optimal control approaches to microgrid energy management. Energy Syst. 9 (2018) 59–77. [CrossRef] [Google Scholar]
  16. B. Heymann, J. Bonnans, F. Silva and G. Jimenez, A stochastic continuous time model for microgrid energy management. In Control Conference (ECC), 2016 European. IEEE (2016) 2084–2089. [CrossRef] [Google Scholar]
  17. Z. Hussien, L. Cheung, M. Siam and A. Ismail, Modeling of sodium sulfur battery for power system applications. Elektrika J. Electr. Eng. 9 (2007) 66–72. [Google Scholar]
  18. E. Iversen, J. Morales and H. Madsen, Optimal charging of an electric vehicle using a Markov decision process. Appl. Energy 123 (2014) 1–12. [CrossRef] [Google Scholar]
  19. J. Morales, A. Conejo, H. Madsen, P. Pinson and M. Zugno, Integrating renewables in electricity markets. Vol. 205 of International Series in Operations Research & Management Science. Springer Science + Business Media, New York (2014). [CrossRef] [Google Scholar]
  20. F. Pacaud, P. Carpentier, J. Chancelier and M. De Lara, Stochastic optimal control of a domestic microgrid equipped with solar panel and battery. Preprint arXiv:1801.06479 (2018). [Google Scholar]
  21. E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114 (1999) 123–150. [CrossRef] [Google Scholar]
  22. S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. [Google Scholar]
  23. H. Pham and X. Wei, Discrete time McKean–Vlasov control problem: a dynamic programming approach. Appl. Math. Optim. 74 (2016) 487–506. [CrossRef] [MathSciNet] [Google Scholar]
  24. H. Pham and X. Wei, Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM: COCV 24 (2018) 437–461. [CrossRef] [EDP Sciences] [Google Scholar]
  25. P.E. Protter, Stochastic Integration and Differential Equations. Springer Berlin Heidelberg, Berlin, Heidelberg, second edition (2003). [Google Scholar]
  26. C. Sun, F. Sun and S. Moura, Nonlinear predictive energy management of residential buildings with photovoltaics & batteries. J. Power Sources 325 (2016) 723–731. [CrossRef] [Google Scholar]
  27. V. Trovato, I.M. Sanz, B. Chaudhuri and G. Strbac, Advanced control of thermostatic loads for rapid frequency response in great Britain. IEEE Trans. Power Syst. 32 (2016) 2106–2117. [Google Scholar]
  28. V. Trovato, S.H. Tindemans and G. Strbac, Leaky storage model for optimal multi-service allocation of thermostatic loads. IET Gener. Trans. Distrib. 10 (2016) 585–593. [CrossRef] [Google Scholar]
  29. X. Wu, X. Hu, S. Moura, X. Yin and V. Pickert, Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. J. Power Sources 333 (2016) 203–212. [CrossRef] [Google Scholar]
  30. J. Yong, Linear forward-backward stochastic differential equations with random coefficients. Prob. Theory Related Fields 135 (2006) 53–83. [CrossRef] [Google Scholar]
  31. J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809–2838. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.