Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 70
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2022055
Published online 21 November 2022
  1. A.A. Agrachev, U. Boscain and M. Sigalotti, A gauss-bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst.-A 20 (2007) 801–822. [Google Scholar]
  2. M.S. Baouendi, Sur une classe d’opérateurs elliptiques dégénérés. Bul. Soc. Math. France 79 (1967) 45–87. [CrossRef] [Google Scholar]
  3. K. Beauchard, P. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. 16 (2013) 67–101. [Google Scholar]
  4. K. Beauchard, J. Dardé and S. Ervedoza, Minimal time issues for the observability of Grushin-type equations. Ann. l'Institut Fourier 70 (2020) 247–312. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Beauchard, L. Miller and M. Morancey, 2d Grushin-type equations: Minimal time and null controllable data. J. Differ. Equ. 259 (2015) 5813–5845. [CrossRef] [Google Scholar]
  6. M. Berger and B. Gostiaux, vol. 115 of Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces. Springer Science & Business Media (2012). [Google Scholar]
  7. U. Biccari and E. Zuazua, Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function. J. Differ. Equ. 261 (2016) 2809–2853. [CrossRef] [Google Scholar]
  8. U. Boscain and C. Laurent, The Laplace-Beltrami operator in almost-Riemannian Geometry. Ann. inst. Fourier 63 (2013) 1739–1770. [CrossRef] [MathSciNet] [Google Scholar]
  9. U. Boscain, D. Prandi and M. Seri, Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds. Commun. Partial Differ. Equ. 41 (2016) 32–50. [CrossRef] [Google Scholar]
  10. P. Cannarsa and R. Guglielmi, Null controllability in large time for the parabolic Grushin operator with singular potential. Geometric control theory and sub-Riemannian geometry, Springer (2014) 87–102. [CrossRef] [Google Scholar]
  11. V. Casarino, P. Ciatti and A. Martini, From refined estimates for spherical harmonics to a sharp multiplier theorem on the Grushin sphere. Adv. Math. 350 (2019) 816–859. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Cazacu, Controllability of the heat equation with an inverse-square potential localized on the boundary. SIAM J. Control Optim. 52 (2014) 2055–2089. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Chisholm and W. Everitt, XIV.-On bounded integral operators in the space of integrable-square functions. Proc. Sect. A: Math. Phys. Sci. 69 (1971) 199–204. [CrossRef] [Google Scholar]
  14. J.-M. Coron, Control and nonlinearity. American Mathematical Society, Providence, R.I. (2007). [Google Scholar]
  15. S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential. Commun. Part. Diff. Equ. 33 (2008) 1996–2019. [CrossRef] [Google Scholar]
  16. W. Everitt, A note on the self-adjoint domains of second-order differential equations. Q. Jl Math. 14 (1963) 41–45. [CrossRef] [Google Scholar]
  17. A. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul, MR 1406566 (97g:93002) (1996). [Google Scholar]
  18. V. Grushin, On a class of hypoelliptic operators. Math. USSR Sb. 12 (1970) 458–476. [CrossRef] [Google Scholar]
  19. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. [CrossRef] [MathSciNet] [Google Scholar]
  20. O.Y. Imanuilov, Controllability of parabolic equations. Sb. Math. 186 (1995) 879–900. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Koenig, Non-null-controllability of the Grushin operator in 2D. Comp. Rendus Math. 355 (2017) 1215–1235. [CrossRef] [Google Scholar]
  22. G. Lebeau and L. Robbiano, Contrôle Exact De L’équation De La Chaleur. Commun. Part. Diff. Equ. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  23. J.L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèèmes distribués (Tome 1, Contrôlabilité exacte. Tome 2, Perturbations), recherches en mathematiques appliquées, Masson (1988). [Google Scholar]
  24. P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6 (2006) 325–362. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Morancey, Approximate controllability for a 2D Grushin equation with potential having an internal singularity. Ann. Inst. Fourier 65 (2015) 1525–1556. [CrossRef] [MathSciNet] [Google Scholar]
  26. M.A. Naımark, Linear differential operators. vol. II Ungar, New York (1968). [Google Scholar]
  27. B. Opic and A. Kufner, Hardy-Type Inequalities. Longman Scientific and Technical, Harlow, UK (1990). [Google Scholar]
  28. A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Applied Math. Sciences 44, Springer, New York (2012). [Google Scholar]
  29. E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ (1971). [Google Scholar]
  30. R.S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52 (1983) 48–79. [CrossRef] [Google Scholar]
  31. R.S. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24 (1986) 221–263. [Google Scholar]
  32. Y.C. de Verdiere, L. Hillairet and E. Trélat, Spectral asymptotics for sub-RiemannianLaplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case. Duke Math. J. 167 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.