Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 71
Number of page(s) 23
DOI https://doi.org/10.1051/cocv/2022063
Published online 24 November 2022
  1. M. Alfaro, H. Garcke, D. Hilhorst, H. Matano and R. Schätzle, Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010) 673-706. [CrossRef] [MathSciNet] [Google Scholar]
  2. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS Project Version 1.5. Arch. Numer. Softw. 3 (2015) 20553. [Google Scholar]
  3. J.W. Barrett, H. Garcke and R. Nurnberg, Numerical approximation of anisotropic geometric evolution equations in the plane. IMA J. Numer. Anal. 28 (2007) 292-330. [CrossRef] [Google Scholar]
  4. J.W. Barrett, H. Garcke and R. Nurnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109 (2008) 1-44. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.W. Barrett, H. Garcke and R. Nurnberg, On the stable discretization of strongly anisotropic phase field models with applications to crystal growth, Z. Angew. Math. Mech. 93 (2013) 719-732. [CrossRef] [Google Scholar]
  6. L. Blank and J. Meisinger, Optimal control of a quasilinear parabolic equation and its time discretization. Appl. Math. Optim. 86, 34 (2022), DOI: 10.1007/s00245-022-09899-4. [CrossRef] [Google Scholar]
  7. E. Casas and L.A. Fernández, Boundary control of quasilinear elliptic equations, Research Report RR-0782, INRIA (1988). [Google Scholar]
  8. E. Casas and L.A. Fernández, Optimal control of quasilinear elliptic equations with non differentiable coefficients at the origin. Rev. Mat. Complut. 4 (1991) 227-250. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Casas and L.A. Fernaández, Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 104 (1993) 20-47. [CrossRef] [Google Scholar]
  10. E. Casas and L.A. Fernáandez, Dealing with integral state constraints in boundary control problems of quasilinear elliptic equations. SIAM J. Control Optim. 33 (1995) 568-589. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.R.C. Clason, V.H. Nhu, Optimal control of a non-smooth quasilinear elliptic equation. Math. Control Relat. Fields 11 (2021) 521-554. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.R. Conn, N.I.M. Gould and P.L. Toint, Trust Region Methods, MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (2000). [Google Scholar]
  13. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Num. 14 (2005) 139-232. [CrossRef] [Google Scholar]
  14. J.J. Eggleston, G.B. McFadden and P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy. Physica D 150 (2001) 91-103. [CrossRef] [Google Scholar]
  15. C.M. Elliott and R. Schätzle, The limit of the anisotropic double-obstacle Allen-Cahn equation. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 1217-1234. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Gräser, R. Kornhuber and U. Sack, Time discretizations of anisotropic Allen-Cahn equations. IMA J. Numer. Anal. 33 (2013) 1226-1244. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, Springer, Netherlands (2008). [Google Scholar]
  18. R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth. Physica D 63 (1993) 410-423. [CrossRef] [Google Scholar]
  19. A. Logg and G.N. Wells, DOLFIN: automated finite element computing. ACM Trans. Math. Software 37, 2, Article No.: 20, (2010) 1-28. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Miranville, On an anisotropic Allen-Cahn system. Cubo (Temuco) 17 (2015) 73-88. [CrossRef] [Google Scholar]
  21. A. Räatz and A. Voigt, Higher order regularization of anisotropic geometric evolution equations in three dimensions. J. Comput. Theor. Nanosci. 3 (2006) 560-564. [CrossRef] [Google Scholar]
  22. T. Steihaug, The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20 (1983) 626-637. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Torabi, J. Lowengrub, A. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems. Proc. Roy. Soc. Edinburgh Sect. A 465 (2009) 1337-1359. [Google Scholar]
  24. G. Wachsmuth, Differentiability of implicit functions: beyond the implicit function theorem. J. Math. Anal. Appl. 414 (2014) 259-272 [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: Regularization and differentiability. Z. Anal. Anwend. 34 (2015) 391-418. [CrossRef] [MathSciNet] [Google Scholar]
  26. G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: Optimality conditions. Z. Anal. Anwend. 35 (2016) 81-118. [CrossRef] [MathSciNet] [Google Scholar]
  27. S.M. Wise, J. Kim and J.S. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive non-linear multigrid method. J. Comp. Phys. 226 (2007) 441-446. [Google Scholar]
  28. M. Wolff and M. Bäohm, On parameter identification for general linear elliptic problems of second order, Berichte aus der Technomathematik 18-01, Universitat Bremen, Zentrum fur Technomathematik, Fachbereich 3-Mathematik und Informatik (2018). [Google Scholar]
  29. G. Wulff, XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Z. Kristallogr. - Cryst. Mater. 34 (1901) 449-530. [CrossRef] [Google Scholar]
  30. E. Zeidler and L.F. Boron, Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators, Springer New York (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.