Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 36
Number of page(s) 33
DOI https://doi.org/10.1051/cocv/2022029
Published online 14 June 2022
  1. V. Agostiniani, G. Dal Maso and A. DeSimone, Attainment results for nematic elastomers. Proc. Roy. Soc. Edinburgh A 145 (2015) 669–701. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Agostiniani and A. DeSimone, Gamma-convergence of energies for nematic elastomers in the small strain limit. Continu. Mech. Thermodyn. 23 (2011) 257–274. [CrossRef] [Google Scholar]
  3. V. Agostiniani and A. De Simone, Dimension reduction for soft active materials via Gamma-convergence. Meccanica 52 (2017) 3457–3470. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Agostiniani and A. DeSimone, Rigorous derivation of active plate models for thin sheets of nematic elastomers. Math. Mech. Solids 25 (2020) 1804–1830. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Agostiniani, A. DeSimone and K. Koumatos, Shape programming for narrow ribbons of nematic elastomers. J. Elasticity 127 (2017) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Bai and K. Bhattacharya, Photomechanical coupling in photoactive nematic elastomers. J. Mech. Phys. Solids 144 (2020) 104115. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, W.D. Gropp, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.8, Argonne National Laboratory (2017). [Google Scholar]
  8. S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in E. Arge, A.M. Bruaset and H.P. Langtangen (editors), Modern Software Tools in Scientific Computing. Birkhäuser Press (1997) 163–202. [CrossRef] [Google Scholar]
  9. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, in Analysis and Continuum Mechanics. Springer (1989), pp. 647–686. [Google Scholar]
  10. M. Barchiesi and A. De Simone, Frank energy for nematic elastomers: a nonlinear model. ESAIM: COCV 21 (2015) 372–377. [CrossRef] [EDP Sciences] [Google Scholar]
  11. P. Bella and R.V. Kohn, Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67 (2014) 693–747. [CrossRef] [Google Scholar]
  12. K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press (2003). [Google Scholar]
  13. P. Bladon, E.M. Terentjev and M. Warner, Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E 47 (1993) R3838. [CrossRef] [PubMed] [Google Scholar]
  14. P. Cesana, PhD Thesis (2009). [Google Scholar]
  15. P. Cesana, Relaxation of multiwell energies in linearized elasticity and applications to nematic elastomers. Arch. Ratl. Mech. Anal. 197 (2010) 903–923. [CrossRef] [Google Scholar]
  16. P. Cesana, Nematic elastomers: Gamma-limits for large bodies and small particles. SIAM J. Math. Anal. 43 (2011) 2354–2383. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Cesana, F. Della Porta, A. Rueland, C. Zillinger and B. Zwicknagl, Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers. Arch. Ratl. Mech. Anal. 237 (2020) 383–445. [CrossRef] [Google Scholar]
  18. P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19 (2009) 601–630. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Cesana and A. DeSimone, Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. J. Mech. Phys. Solids 59 (2011) 787–803. [Google Scholar]
  20. P. Cesana and A.A. Leon Baldelli, Variational modelling of nematic elastomer foundations. Math. Models Methods Appl. Sci. 28 (2018) 2863–2904. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Cesana, P. Plucinsky and K. Bhattacharya, Effective behavior of nematic elastomer membranes. Arch. Ratl. Mech. Anal. 218 (2015) 1–43. [Google Scholar]
  22. P.G. Ciarlet, vol. 1 of Three-dimensional elasticity. Elsevier (1988). [Google Scholar]
  23. S. Conti, A. DeSimone and G. Dolzmann, Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E 60 (2002) 61710-1-8. [Google Scholar]
  24. S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50 (2002) 1431–1451. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Dal Maso, An introduction to T-convergence, volume 8 of Progress in Nonlinear Differential Equations and their Applications. Springer Science+Business Media, LLC (1993). [Google Scholar]
  26. P.-G. De Gennes and J. Prost, vol. 23 of The physics of liquid crystals, Clarendon Press, Oxford (1993). [Google Scholar]
  27. A. DeSimone, Energy minimizers for large ferromagnetic bodies. Arch. Ratl. Mech. Anal. 125 (1993) 99–143. [CrossRef] [Google Scholar]
  28. A. DeSimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591–603. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. DeSimone, Energetics of fine domain structures. Ferroelectrics 222 (1999) 275–284. [CrossRef] [Google Scholar]
  30. A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO (3)-invariant energies. Arch. Ratl. Mech. Anal. 161 (2002) 181–204. [CrossRef] [Google Scholar]
  31. A. DeSimone, P. Gidoni and G. Noselli, Liquid crystal elastomer strips as soft crawlers. J. Mech. Phy. Solids 84 (2015) 254–272. [CrossRef] [Google Scholar]
  32. A. DeSimone and L. Teresi, Elastic energies for nematic elastomers. Eur. Phys. J. E 29 (2009) 191–204. [CrossRef] [PubMed] [Google Scholar]
  33. J. Ericksen, Liquid crystals with variable degree of orientation. Arch. Ratl. Mech. Anal. 113 (1991) 97–120. [CrossRef] [Google Scholar]
  34. F. Frank, P. Wojtowicz and P. Sheng, On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19–28. [CrossRef] [Google Scholar]
  35. F. Greco, V. Domenici, S. Romiti, T. Assaf, B. Zupaněiě, J. Milavec, B. Zalar, B. Mazzolai and V. Mattoli, Reversible heat-induced microwrinkling of PEDOT: PSS nanofilm surface over a monodomain liquid crystal elastomer. Mol. Cryst. Liquid Crys. 572 (2013) 40–49. [CrossRef] [Google Scholar]
  36. K. Korner, A.S. Kuenstler, R.C. Hayward, B. Audoly and K. Bhattacharya, A nonlinear beam model of photomotile structures. Proc. Natl. Acad. Sci. 117 (2020) 9762. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  37. A. Kuenstler, Y. Chen, P. Bui, H. Kim, A. DeSimone, L. Jin and R. Hayward, Blueprinting photothermal shape-morphing of liquid crystal elastomers. Adv. Mater. 32 (2020) 2000609. [CrossRef] [Google Scholar]
  38. A. Logg, K.-A. Mardal and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, vol. 84. Springer Science & Business Media (2012). [CrossRef] [Google Scholar]
  39. L. Longa, D. Monselesan and H.-R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liquid Cryst. 2 (1987) 769–796. [CrossRef] [Google Scholar]
  40. P. Plucinsky, B.A. Kowalski, T.J. White and K. Bhattacharya, Patterning nonisometric origami in nematic elastomer sheets. Soft Matter 14 (2018) 3127–3134. [CrossRef] [PubMed] [Google Scholar]
  41. P. Plucinsky, M. Lemm and K. Bhattacharya, Programming complex shapes in thin nematic elastomer and glass sheets. Phys. Rev. E 94 (2016) 010701. [CrossRef] [PubMed] [Google Scholar]
  42. H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K.K. Parker and P. Damman, Hierarchical wrinkling patterns. Soft Matter 6 (2010) 5751–5756. [CrossRef] [Google Scholar]
  43. E.G. Virga, Variational theories for liquid crystals, vol. 8. CRC Press (1995). [Google Scholar]
  44. M. Warner and E.M. Terentjev, Liquid Crystal Elastomers. Oxford University Press (2003). [Google Scholar]
  45. T.J. White and D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14 (2015) 1087–1098. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.