Open Access
Volume 28, 2022
Article Number 35
Number of page(s) 17
Published online 02 June 2022
  1. J. Bismut, Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 (1973) 384–404. [CrossRef] [MathSciNet] [Google Scholar]
  2. X. Bi, J. Sun and J. Xiong, Optimal control for controllable stochastic linear systems. ESAIM: COCV 26 (2020) 98. [CrossRef] [EDP Sciences] [Google Scholar]
  3. K. Du, J. Huang and Z. Wu, Linear quadratic mean-field-game of backward stochastic differential systems. Math. Control Relat. Fields 8 (2018) 653–678. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Davis, Linear Estimation and Stochastic Control. Chapman and Hall, London (1977). [Google Scholar]
  5. J. Huang, G. Wang and J. Xiong, A maximum principle for partial information backward stochastic control problems with applications. SIAM J. Control Optim. 48 (2009) 2106–2117. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Huang, S. Wang and Z. Wu, Backward mean-field linear-quadratic-Gaussian (LQG) games: full and partial information. IEEE Trans. Automat. Control 61 (2016) 3784–3796. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.E.B. Lim and X.Y. Zhou, Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40 (2001) 450–474. [CrossRef] [MathSciNet] [Google Scholar]
  8. X. Li, J. Sun and J. Xiong, Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl. Math. Optim. 80 (2019) 223–250. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications. Lecture Notes in Math., Springer-Verlag, New York (1999). [Google Scholar]
  10. E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55—61. [CrossRef] [Google Scholar]
  11. H. Pham, Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Berlin (2009). [Google Scholar]
  12. S. Peng, Backward stochastic differential equation, nonlinear expectation and their applications, in Proceedings of the International Congress of Mathematicians (2010), Vol. I, pp. 393—432. [Google Scholar]
  13. J. Sun and H. Wang, Linear-quadratic optimal control for backward stochastic differential equations with random coefficients. ESAIM: COCV 27 (2021) 46. [CrossRef] [EDP Sciences] [Google Scholar]
  14. J. Sun, Z. Wu and J. Xiong, Indefinite Backward Stochastic Linear-Quadratic Optimal Control Problems. Preprint [Google Scholar]
  15. G. Wang, Z. Wu and J. Xiong, Partial information LQ optimal control of backward stochastic differential equations, in Proceedings of the 10th World Congress on Intelligent Control and Automation. IEEE (2012), pp. 1694–1697. [Google Scholar]
  16. G. Wang, H. Xiao and J. Xiong, A kind of LQ non-zero sum differential game of backward stochastic differential equation with asymmetric information. Automatica 97 (2018) 346–352. [CrossRef] [Google Scholar]
  17. J. Wen, X. Li and J. Xiong, Weak closed-loop solvability of stochastic linear quadratic optimal control problems of Markovian regime switching system. Appl. Math. Optim. 84 (2021) 535–565. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Wonham, On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968) 681–697. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]
  20. J. Zhang, Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer-Verlag, New York (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.