Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 1
Number of page(s) 32
DOI https://doi.org/10.1051/cocv/2021107
Published online 11 January 2022
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. ISSN. Elsevier Science (2003). [Google Scholar]
  2. F. Alabau-Boussouira, On some recent advances on stabilization for hyperbolic equations. In Cannarsa, Piermarco, Coron and Jean-Michel, editors, Control of partial differential equations, volume 2048 of Lecture Notes in Mathematics. Springer (2012) 1–100. [Google Scholar]
  3. D. Amadori, F. Aqel and E. Dal Santo, Decay of approximate solutions for the damped semilinear wave equation on a bounded 1d domain. J. Math. Pures Appl. 132 (2019) 166–206. [Google Scholar]
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  5. Y. Chitour, S. Marx and C. Prieur, Lp -asymptotic stability analysis of a 1d wave equation with a nonlinear damping. J. Differ. Equ. 269 (2020) 8107–8131. [Google Scholar]
  6. C.M. Dafermos, Asymptotic behavior of solutions of evolution equations. In Michael G. Crandall, editor, Nonlinear Evolution Equations. Academic Press (1978) 103–123. [Google Scholar]
  7. G.B. Folland, Fourier Analysis and Its Applications. Advanced Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software (1992). [Google Scholar]
  8. A. Haraux, Comportement a l’infini pour une équation des ondes non lineaire dissipative. C.R.A.S Paris 287 (1978) 507–509. [Google Scholar]
  9. A. Haraux, Lp estimates of solutions to some non-linear wave equations in one space dimension. Int. J. Math. Model. Numer. Optim. 1 (2009) 146–152. [Google Scholar]
  10. J. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer-Verlag Berlin Heidelberg (2001). [Google Scholar]
  11. M. Kafnemer, B. Mebkhout and Y. Chitour, Weak input to state estimates for 2d damped wave equations with localized and non-lineardamping (2020). [Google Scholar]
  12. V. Komornik, Exact Controllability and Stabilization: The Multiplier Method. Wiley, Masson, Paris (1994). [Google Scholar]
  13. K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997). [Google Scholar]
  14. P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Matemát. Complut.1999 12 (1999) 251–283. [Google Scholar]
  15. P. Martinez and J. Vancostenoble, Exponential stability for the wave equation with weak nonmonotone damping. Portugaliae Math. 57 (2000) 3–2000. [Google Scholar]
  16. J.C. Peral, Lp estimatesfor the wave equation. J. Funct. Anal. 36 (1980) 114–145. [Google Scholar]
  17. W.A. Strauss, Partial Differential Equations: An Introduction. Wiley (2007). [Google Scholar]
  18. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15 (1990) 205–235. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.