Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 8
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2022001
Published online 21 January 2022
  1. J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16 (2014) 2433–2475. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73–89. [Google Scholar]
  3. V. Barbu, Exact null internal controllability for the heat equation on unbounded convex domains. ESAIM: COCV 20 (2014) 222–235. [CrossRef] [EDP Sciences] [Google Scholar]
  4. V.R. Cabanillas, S.B. de Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms. J. Optim. Theory Appl. 110 (2001) 245–264. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.M. Coron, Control and Nonlinearity. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  6. L. De Teresa, Approximate controllability of a semilinear heat equation in ℝN. SIAM J. Control Optim. 36 (1998) 2128–2147. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. De Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains. Nonlinear Anal. 37 (1999) 1059–1090. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Duan, L. Wang and C. Zhang, Observability inequalities for the heat equation with bounded potentials on the whole space. SIAM J. Control Optim. 58 (2020) 1939–1960. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Egidi and I. Veselićm Sharp geometric condition for null-controllability of the heat equation on ℝd and consistent estimates on the control cost. Arch. Math. (Basel) 111 (2018) 85–99. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Egidi, I. Nakić, A. Seelmann, M. Täufer, M. Tautenhahn and I. Veselić, Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains. Edited by J. Kerner, H. Laasri, D. Mugnolo, in Vol. 277 of Control Theory of Infinite-Dimensional Systems. Operator Theory: Advances and Applications. Birkhäuser, Cham (2020). [Google Scholar]
  11. C. Fabre, J. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583–616. [Google Scholar]
  13. A.V. Fursikov and O.Y. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  14. M. Gonzalez-Burgos and L. De Teresa, Some results on controllability for linear and nonlinear heat equations in unbounded domains. Adv. Differ. Equ. 12 (2007) 1201–1240. [Google Scholar]
  15. K. Le Balc’h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations. J. Math. Pures Appl. 135 (2020) 103–139. [Google Scholar]
  16. J. Le Rousseau and I. Moyano, Null-controllability of the Kolmogorov equation in the whole phase space. J. Differ. Equ. 260 (2016) 3193–3233. [CrossRef] [Google Scholar]
  17. I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM: COCV 26 (2020) 54. [CrossRef] [EDP Sciences] [Google Scholar]
  18. K.D. Phung, Carleman commutator approach in logarithmic convexity for parabolic equations. Math. Control Relat. Fields 8 (2018) 899–933. [CrossRef] [MathSciNet] [Google Scholar]
  19. K.D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain. J. Funct. Anal. 259 (2010) 1230–1247. [CrossRef] [MathSciNet] [Google Scholar]
  20. K.D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15 (2013) 681–703. [CrossRef] [MathSciNet] [Google Scholar]
  21. K.D. Phung, L. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 477–499. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.C. Robinson, J.L. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations. Classical Theory. Cambridge Studies in Advanced Mathematics, 157. Cambridge University Press, Cambridge (2016). [Google Scholar]
  23. A. Seelmann and I. Veselić, Exhaustion approximation for the control problem of the heat or Schrödinger semigroup on unbounded domains. Arch. Math. (Basel) 115 (2020) 195–213. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations. Progress in Nonlinear Differential Equations and Their Applications, 92. Subseries in Control. Birkhäuser, Cham (2018). [CrossRef] [Google Scholar]
  25. G. Wang, M. Wang, C. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in ℝN. J. Math. Pures Appl. 126 (2019) 144–194. [CrossRef] [MathSciNet] [Google Scholar]
  26. G. Wang and C. Zhang, Observability inequalities from measurable sets for some abstract evolution equations. SIAM J. Control Optim. 55 (2017) 1862–1886. [CrossRef] [MathSciNet] [Google Scholar]
  27. C. Zhang, Quantitative unique continuation for the heat equation with Coulomb potentials. Math. Control Relat. Fields 8 (2018) 1097–1116. [CrossRef] [MathSciNet] [Google Scholar]
  28. X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchhoff plate systems with potentials in unbounded domains. Hyperbolic problems: theory, numerics, applications. Springer, Berlin (2008) 233–243. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.