Open Access
Volume 28, 2022
Article Number 7
Number of page(s) 30
Published online 21 January 2022
  1. N. Aguila-Camacho, M.A. Duarte-Mermoud and J.A. Gallegos, Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 2951–2957. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Bandyopadhyay and S. Kamal, Stabilization and Control of Fractional Order Systems: a Sliding Mode Approach. Vol. 317 of Lecture Notes in Electrical Engineering. Springer, Cham (2015). [CrossRef] [Google Scholar]
  3. J. Chauvin, G. Corde, N. Petit and P. Rouchon, Period input estimation for linear periodic systems: Automotive engine applications. Automatica 43 (2007) 971–980. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Chen, B.T. Cui and Y.Q. Chen, Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity. IET Control Theory Appl. 12 (2018) 1561–1572. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.G. Dai and B.B. Ren, UDE-based robust boundary control for an unstable parabolic PDE with unknown input disturbance. Automatica 93 (2018) 363–368. [CrossRef] [Google Scholar]
  6. D.S. Ding, D.L. Qi, Y. Meng and L. Xu, Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems. 53rd IEEE CDC, Los Angeles, California, USA (2014) 15–17. [Google Scholar]
  7. H. Feng and B.Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. IEEE Trans. Autom. Control 62 (2017) 3774–3787. [CrossRef] [Google Scholar]
  8. Z. Gao, Active disturbance rejection control for nonlinear fractional-order systems. Internat. J. Robust Nonlinear Control 26 (2016) 876–892. [CrossRef] [MathSciNet] [Google Scholar]
  9. F.D. Ge, T. Meurer and Y.Q. Chen, Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters. Systems Control Lett. 122 (2018) 86–92. [CrossRef] [MathSciNet] [Google Scholar]
  10. F.D. Ge and Y.Q. Chen, Regional output feedback stabilization of semilinear time-fractional diffusion systems in a parallelepipedon with control constraints. Internat. J. Robust Nonlinear Control 30 (2020) 3639–3652. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions Related Topics and Applications. Springer, Heidelberg (2014). [Google Scholar]
  12. B.Z. Guo and F.F. Jin, Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input. IEEE Trans. Autom. Control 58 (2013) 1269–1274. [CrossRef] [Google Scholar]
  13. B.Z. Guoand H.C. Zhou, The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance, IEEE Trans. Autom. Control 60 (2015) 143–157. [CrossRef] [Google Scholar]
  14. B.Z. Guo, Z.H. Wu and H.C. Zhou, Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Automat. Control 61 (2016) 1613–1618. [CrossRef] [MathSciNet] [Google Scholar]
  15. B.Z. Guo and Z.H. Wu, Active disturbance rejection control approach to output-feedback stabilization of lower triangular nonlinearsystems with stochastic uncertainty. Internat. J. Robust Nonlinear Control 27 (2017) 2773–2797. [CrossRef] [MathSciNet] [Google Scholar]
  16. W. Guo and B.Z. Guo, Adaptive output feedback stabilization for one-dimensional wave equation with corrupted observation by harmonic disturbance. SIAM J. Control Optim. 51 (2013) 1679–1706. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.Q. Han, From PID to active disturbance rejection control. IEEE Trans. Indust. Electron. 56 (2009) 900–906. [CrossRef] [Google Scholar]
  18. B.B. He, H.C. Zhou, Y.Q. Chen and C.H. Kou, Asymptotical stability of fractional order systems with time delay via an integral inequality. IET Control Theory Appl. 12 (2018) 1748–1754. [CrossRef] [MathSciNet] [Google Scholar]
  19. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). [Google Scholar]
  20. Y. Li, Y.Q. Chen, and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45 (2009) 1965–1969. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.S. Liang, Y.Q. Chen and R. Fullmer, Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations. Nonlinear Dynam. 38 (2004) 339–354. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.S. Liang, Y.Q. Chen, B.M. Vinagre and I. Podlubny, Fractional order boundary stabilization of a time-fractional wave equation, in Fractional Derivatives an Their Applications, edited by A. Le Mehauté, J.A. Tenreiro Machado, J.C. Trigeassou and J. Sabatier. UBooks Augsburg, Germany (2005). [Google Scholar]
  23. J.S. Liang, Y.Q. Chen, Max Q.-H. Meng, and R. Fullmer, Fractional-order boundary control of fractional wave equation with delayed boundary measurement using smith predictor. 43rd IEEE CDC, Atlantis, Bahamas (2004). [Google Scholar]
  24. P. Linz, Analytical and Numerical Methods for Volterra Equations. SIAM Studies in Applied Mathematics, Philadelphia, PA (1985). [Google Scholar]
  25. J.J. Liu and J.M. Wang, Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance. IEEE Trans. Automat. Control 64 (2019) 3068–3073. [CrossRef] [MathSciNet] [Google Scholar]
  26. Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE. Math. Control Signals Systems 28 (2016) Art. 10 21. [Google Scholar]
  27. C.W. Lv and C.J. Xu, Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38 (2016) 2699–2724. [Google Scholar]
  28. F. Mainardi, Fractional diffusive waves in viscoelastic solids, in Nonlinear Waves in Solids, edited by J.L. Wegner, F.R. Norwood. ASME/AMR, Fairfield (1995) 93–7. [Google Scholar]
  29. D. Matignon, Stability results for fractional differential equations with applications to control processing, IMACS/IEEE-SMC Multiconference, Symposium on Control, Optimization and Supervision (CESA) (1996) 963–968. [Google Scholar]
  30. B. Mbodje and M. Gerard, Boundary fractional derivative control of the wave equation. IEEE Trans. Automat. Control 40 (1995) 378–382. [CrossRef] [MathSciNet] [Google Scholar]
  31. K. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, vol. III. Academic Press, New York and London (1974). [Google Scholar]
  32. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). [Google Scholar]
  33. W.R. Schneider and W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989) 134–144. [CrossRef] [MathSciNet] [Google Scholar]
  34. T. Simon, Comparing Fréchet and positive stable laws. Electr. J. Probab. 19 (2014) 1–25. [Google Scholar]
  35. A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. Princeton University Press, Princeton, NJ (2010). [CrossRef] [Google Scholar]
  36. A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613–625. [CrossRef] [Google Scholar]
  37. J.M. Wang, J.J. Liu, B.B. Ren and J.H. Chen, Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance. Automatica 52 (2015) 23–34. [CrossRef] [Google Scholar]
  38. Q. Zhengand Z. Gao, An energy saving, factory-validated disturbance decoupling control design for extrusion processes, The 10th World Congress on Intelligent Control and Automation. IEEE, Piscataway, NJ (2012) 2891–2896. [Google Scholar]
  39. H.C. Zhou and B.Z. Guo, Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty. J. Differ. Equ. 263 (2017) 2213–2246. [CrossRef] [Google Scholar]
  40. H.C. Zhou, C.W. Lv, B.Z. Guo and Y.Q. Chen, Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance. Internat. J. Robust Nonlinear Control 29 (2019) 4384–4401. [CrossRef] [MathSciNet] [Google Scholar]
  41. H.C. Zhou and B.Z. Guo, Boundary feedback stabilization for an unstable time fractional reaction diffusion equations. SIAM J. Control Optim. 56 (2018) 75–101. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.