Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 4
Number of page(s) 53
DOI https://doi.org/10.1051/cocv/2021106
Published online 11 January 2022
  1. L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces. Springer (2003) 1–52. [Google Scholar]
  2. P. Billingsley, Convergence of Probability Measures. John Wiley & Sons (2013). [Google Scholar]
  3. M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on ℝN. SIAM J. Math. Anal. 46 (2014) 2310–2349. [Google Scholar]
  4. T.J.I. Bromwich, An Introduction to the Theory of Infinite Series. Vol. 335. Merchant Books (1908). [Google Scholar]
  5. A. Burchard, Cases of equality in the Riesz rearrangement inequality. Ann. Math. (1996) 499–527. [Google Scholar]
  6. A. Burchard and G.R. Chambers, Geometric stability of the Coulomb energy. Calc. Variat. Partial Differ. Equ. 54 (2015) 3241–3250. [Google Scholar]
  7. A. Burchard, R. Choksi and I. Topaloglu, Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. Math. J. 67 (2018) 375–395. [Google Scholar]
  8. R. Choksi, R.C. Fetecau and I. Topaloglu, On minimizers of interaction functionals with competing attractive and repulsive potentials, vol. 32 of Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier (2015) 1283–1305. [Google Scholar]
  9. R. Choksi, C.B. Muratov and I. Topaloglu, An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notic. AMS 64 (2017) 1275–1283. [Google Scholar]
  10. R. Choksi and M.A. Peletier, Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional. SIAM J. Math. Anal. 43 (2011) 739–763. [Google Scholar]
  11. M. Christ, A sharpened Riesz-Sobolev inequality. Preprint arXiv:1706.02007 (2017). [Google Scholar]
  12. M. Cicalese and G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ratl. Mech. Anal. 206 (2012) 617–643. [Google Scholar]
  13. M. Cozzi and A. Figalli, Regularity theory for local and nonlocal minimal surfaces: an overview, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Springer (2017) 117–158. [Google Scholar]
  14. C. Dellacherie and P.-A. Meyer, Probabilities and potential. Bull. Am. Math. Soc. 2 (1980) 510–514. [Google Scholar]
  15. R. Estrada, The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions. Boletim da Sociedade Paranaense de Matemática 37 (2017) 143–157. [Google Scholar]
  16. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015). [Google Scholar]
  17. F. Ferrari, Weyl and Marchaud derivatives: a forgotten history. Mathematics 6 (2018) 6. [Google Scholar]
  18. A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. [Google Scholar]
  19. R. Frank, E. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21 (2008) 925–950. [Google Scholar]
  20. R.L. Frank, R. Killip and P.T. Nam, Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106 (2016) 1033–1036. [Google Scholar]
  21. R.L. Frank and E.H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47 (2015) 4436–4450. [Google Scholar]
  22. R.L. Frank and E.H. Lieb, A note on a theorem of M. Christ. Preprint arXiv:1909.04598 (2019). [Google Scholar]
  23. R.L. Frank and E.H. Lieb, Proof of spherical flocking based on quantitative rearrangement inequalities. Preprint arXiv:1909.04595 (2019). [Google Scholar]
  24. R.L. Frank and P.T. Nam, Existence and nonexistence in the liquid drop model. Calc. Variat. Partial Differ. Equ. 60 (2021). [Google Scholar]
  25. R.L. Frank, P.T. Nam and H. Van Den Bosch, The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Commun. Pure Appl. Math. 71 (2018) 577–614. [Google Scholar]
  26. B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn. Trans. Am. Math. Soc. 314 (1989) 619–638. [Google Scholar]
  27. N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. [Google Scholar]
  28. N. Fusco and A. Pratelli, Sharp stability for the Riesz potential. ESAIM: COCV 26 (2020) 113. [Google Scholar]
  29. G. Gamow, Mass defect curve and nuclear constitution. Proc. Royal Soc. London A 126 (1930) 632–644. [Google Scholar]
  30. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products. Academic Press (2014). [Google Scholar]
  31. V. Julin, Isoperimetric problem with a Coulomb repulsive term. Indiana Univ. Math. J. (2014) 77–89. [Google Scholar]
  32. H. Knüpfer and C.B. Muratov, On an isoperimetric problem with a competing nonlocal term I: the planar case. Commun. Pure Appl. Math. 66 (2013) 1129–1162. [Google Scholar]
  33. H. Knüpfer and C.B. Muratov, On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67 (2014) 1974–1994. [Google Scholar]
  34. D.A. La Manna An isoperimetric problem with a Coulombic repulsion and attractive term. ESAIM: COCV 25 (2019) 14. [Google Scholar]
  35. P.-L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case. Part 1. Ann. l’Institut Henri Poincaré (C) Non Linear Analysis 1 (1984) 109–145. [Google Scholar]
  36. J. Lu and F. Otto, Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. 67 (2014) 1605–1617. [Google Scholar]
  37. J. Lu and F. Otto, An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus. Preprint arXiv:1508.07172 (2015). [Google Scholar]
  38. R.E. Pfiefer, Maximum and minimum sets for some geometric mean values. J. Theor. Probab. 3 (1990) 169–179. [Google Scholar]
  39. L. Pick, A. Kufner, O. John and S. Fucík, Function Spaces 1. Walter de Gruyter (2012). [Google Scholar]
  40. F. Riesz, Sur une inegalite integarale. J. London Math. Soc. 1 (1930) 162–168. [Google Scholar]
  41. B. Rubin, The inversion of fractional integrals on a sphere. Israel J. Math. 79 (1992) 47–81. [Google Scholar]
  42. B. Rubin, Vol. 160 of Introduction to Radon transforms. Cambridge University Press (2015). [Google Scholar]
  43. S. Samko, Hypersingular Integrals and Their Applications. CRC Press (2001). [Google Scholar]
  44. L.J. Slater, Generalized Hypergeometric Functions. Cambridge Univ. Press (1966). [Google Scholar]
  45. F.G. Tricomi, A. Erdélyi et al., The asymptotic expansion of a ratio of gamma functions. Pacific J. Math. 1 (1951) 133–142. [Google Scholar]
  46. C. Villani, Vol. 338 of Optimal Transport: Old and New. Springer Science & Business Media (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.