Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 5
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2021110
Published online 17 January 2022
  1. J. Bismut, Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 (1976) 419–444. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Control Optim. 36 (1998) 1685–1702. [Google Scholar]
  3. X. Chen and X. Zhou, Stochastic linear-quadratic control with conic control constraints on an infinite time horizon. SIAM J. Control Optim. 43 (2004) 1120–1150. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Guatteri and F. Masiero, Infinite horizon and ergodic optimal quadratic control for an affine equation with stochastic coefficients. SIAM J. Control Optim. 48 (2009) 1600–1631. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Guatteri and G. Tessitore, Backward stochastic Riccati equations and infinite horizon LQ optimal control with infinite dimensional state space and random coefficients. Appl. Math. Optim. 57 (2008) 207–235. [CrossRef] [MathSciNet] [Google Scholar]
  6. Y. Hu, P. Imkeller and M. Müller, Utility maximization in incomplete markets. Ann. Appl. Probab. 15 (2005) 1691–1712. [MathSciNet] [Google Scholar]
  7. Y. Hu, X. Shi and Z. Xu, Constrained stochastic LQ control with regime switching and application to portfolio selection. To appear in Ann. Appl. Probab. (2021) arXiv:2004.11832. [Google Scholar]
  8. Y. Hu and X. Zhou, Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control Optim. 44 (2005) 444–466. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2000) 558–602. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Kohlmann and X. Zhou, Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach. SIAM J. Control Optim. 38 (2000) 1392–1407. [CrossRef] [MathSciNet] [Google Scholar]
  11. X. Li, X. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon. J. Global Optim. 27 (2003) 149–175. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Pu and Q. Zhang, Constrained stochastic LQ optimal control problem with random coefficients on infinite time horizon. Appl. Math. Optim. 83 (2021) 1005–23. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.A. Rami and X. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans. Automatic Control 45 (2000) 1131–1143. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Sun and J. Yong, Stochastic linear quadratic optimal control problems in infinite horizon. Appl. Math. Optim. 78 (2018) 145–183. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. [Google Scholar]
  16. W. Wonham, On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968) 681–697. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Yao, S. Zhang and X. Zhou, Stochastic linear-quadratic control via semidefinite programming. SIAM J. Control Optim. 40 (2001) 801–823. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Yao, S. Zhang and X. Zhou, Tracking a financial benchmark using a few assets. Oper. Res. 54 (2006) 232–246. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach. Springer, New York (2013). [CrossRef] [Google Scholar]
  20. J. Yong and X. Zhou, Stochastic controls: Hamiltonian systems and HJB equations. Springer, New York (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.