Open Access
Volume 28, 2022
Article Number 80
Number of page(s) 36
Published online 23 December 2022
  1. R. Adams and J. Fournier, Sobolev Spaces, vol. 140. Elsevier (2003). [Google Scholar]
  2. A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertainty Quantif. 5 (2017) 1166-1192. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Appell and P.P. Zabrejko, Vol. 95 of Nonlinear superposition operators. Cambridge University Press (1990). [Google Scholar]
  4. P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance 9 (1999) 203-228. [Google Scholar]
  5. J.-P. Aubin and H. Frankowska, Set-valued analysis. Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA (1990). [Google Scholar]
  6. J.M. Ball and F. Murat, Remarks on Chacon’s biting lemma. Proc. Am. Math. Soc. 107 (1989) 655-663. [Google Scholar]
  7. H.H. Bauschke, P.L. Combettes et al., Vol. 408 of Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011). [Google Scholar]
  8. P. Benner, A. Onwunta and M. Stoll, Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM J. Matrix Anal. Appi. 37 (2016) 491-518. [CrossRef] [Google Scholar]
  9. M. Bergounioux and F. Troltzsch, Optimal control of linear bottleneck problems. ESAIM: COCV 3 (1998) 235-250. [CrossRef] [EDP Sciences] [Google Scholar]
  10. J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer-Verlag, New York (2013). [Google Scholar]
  11. E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Chen and O. Ghattas, Taylor approximation for chance constrained optimization problems governed by partial differential equations with high-dimensional random parameters. SIAM/ASA J. Uncert. Quantif. 9 (2021) 1381-1410. [CrossRef] [Google Scholar]
  13. P. Chen, A. Quarteroni and G. Rozza, A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51 (2013) 3163-3185. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty-a stochastic programming perspective. SIAM J. Optim. 19 (2008) 1610-1632. [Google Scholar]
  15. D. Dentcheva and A. Ruszczynski, Subregular recourse in nonlinear multistage stochastic optimization. Math. Program. (2021) 1-22. [Google Scholar]
  16. Y. Ermoliev, T. Ermolieva, T. Kahil, M. Obersteiner, V. Gorbachuk and P. Knopov, Stochastic optimization models for risk-based reservoir management. Cybern. Syst. Anal. 55 (2019) 55-64. [CrossRef] [Google Scholar]
  17. M.H. Farshbaf-Shaker, R. Henrion and D. Hömberg, Properties of chance constraints in infinite dimensions with an application to PDE constrained optimization. Set-Valued Variat. Anal. 26 (2018) 821-841. [CrossRef] [Google Scholar]
  18. D. Filipović and G. Svindland, The canonical model space for law-invariant convex risk measures is L1. Math. Finance 22 (2012) 585-589. [CrossRef] [MathSciNet] [Google Scholar]
  19. D.B. Gahururu, M. Hintermüller and T.M. Surowiec, Risk-neutral PDE-constrained generalized Nash equilibrium problems. Math. Program. (2022) 1-51. [Google Scholar]
  20. C. Geiersbach and W. Wollner, A stochastic gradient method with mesh refinement for PDE-constrained optimization under uncertainty. SIAM J. Scient. Comput. 42 (2020) A2750-A2772. [CrossRef] [Google Scholar]
  21. C. Geiersbach and W. Wollner, Optimality conditions for convex stochastic optimization problems in banach spaces with almost sure state constraints. SIAM J. Optim. 4 (2021) 2455-2480. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Geletu, A. Hoffmann, P. Schmidt and P. Li, Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation. ESAIM: COCV 26 (2020) 70. [CrossRef] [EDP Sciences] [Google Scholar]
  23. M. Hintermuäller and K. Kunisch, Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198-1221. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Hintermuäller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17 (2006) 159-187. [CrossRef] [MathSciNet] [Google Scholar]
  25. A.D. Ioffe and V.L. Levin, Subdifferentials of convex functions. Trudy Moskovskogo Matematicheskogo Obshchestva 26 (1972) 3-73. [Google Scholar]
  26. P. Kolvenbach, O. Lass and S. Ulbrich, An approach for robust PDE-constrained optimization with application to shape optimization of electrical engines and of dynamic elastic structures under uncertainty. Optim. Eng. 19 (2018) 697-731. [CrossRef] [MathSciNet] [Google Scholar]
  27. D.P. Kouri, M. Heinkenschloss, D. Ridzal and B.G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847-A1879. [CrossRef] [Google Scholar]
  28. D.P. Kouri and T.M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26 (2016) 365-396. [Google Scholar]
  29. D.P. Kouri and T.M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertainty Quant. 6 (2018) 787-815. [CrossRef] [Google Scholar]
  30. V.L. Levin, The Lebesgue decomposition for functionals on the vector-function space LX. Funct. Anal. Appi. 8 (1974) 314-317. [Google Scholar]
  31. J.M. Mulvey and B. Shetty, Financial planning via multi-stage stochastic optimization. Comput. Oper. Res. 31 (2004) 1-20. [CrossRef] [MathSciNet] [Google Scholar]
  32. M.V. Pereira and L.M. Pinto, Multi-stage stochastic optimization applied to energy planning. Math. Program. 52 (1991) 359-375. [CrossRef] [Google Scholar]
  33. G. Pflug and A. Pichler, Multistage Stochastic Optimization, Springer (2014). [Google Scholar]
  34. G. Pflug and W. Römisch, Modeling, Measuring and Managing Risk. World Scientific (2007). [Google Scholar]
  35. R. Rockafellar, Integrals which are convex functionals. II. Pacific J. Math. 39 (1971) 439-469. [CrossRef] [MathSciNet] [Google Scholar]
  36. R.T. Rockafellar, Convex integral functionals and duality, in Contributions to nonlinear functional analysis. Elsevier (1971), pp. 215-236. [Google Scholar]
  37. R.T. Rockafellar, Conjugate duality and optimization. SIAM (1974). 10.1137/1.9781611970524. [Google Scholar]
  38. R.T. Rockafellar, Integral functionals, normal integrands and measurable selections, in Nonlinear operators and the calculus of variations. Springer (1976), pp. 157-207. [Google Scholar]
  39. R.T. Rockafellar and J. Royset, Engineering decisions under risk averseness. ASCE-ASME J. Risk Uncert. Eng. Syst. A 1 (2015) 04015003. [CrossRef] [Google Scholar]
  40. R.T. Rockafellar and R.J.-B. Wets, Stochastic convex programming: Kuhn-Tucker conditions. J. Math. Econ. 2 (1975) 349-370. [CrossRef] [Google Scholar]
  41. R.T. Rockafellar and R.J.-B. Wets, Stochastic convex programming: basic duality. Pacific J. Math. 62 (1976) 173-195. [CrossRef] [MathSciNet] [Google Scholar]
  42. R.T. Rockafellar and R.J.-B. Wets, Stochastic convex programming: relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14 (1976) 574-589. [CrossRef] [MathSciNet] [Google Scholar]
  43. R.T. Rockafellar and R.J.-B. Wets, Stochastic convex programming: singular multipliers and extended duality singular multipliers and duality. Pacific J. Math. 62 (1976) 507-522. [CrossRef] [MathSciNet] [Google Scholar]
  44. C. Schillings, S. Schmidt and V. Schulz, Efficient shape optimization for certain and uncertain aerodynamic design. Comput. Fluids 46 (2011) 78-87. [CrossRef] [MathSciNet] [Google Scholar]
  45. A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009). [Google Scholar]
  46. J.J. Uhl, Extensions and decompositions of vector measures. J. London Math. Soc. 2 (1971) 672-676. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.