Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 81
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2022076
Published online 23 December 2022
  1. A.J.C. Barré de Saint-Venant, Théorie du Mouvement non Permanent des Eaux, avec Application aux Crues des Rivières et a l’introduction de Marees dans Leurs Lits. Compt. Rend. l’Académie Sci. 73 (1871) 147-154 and 237-240. [Google Scholar]
  2. G. Bastin, J.-M. Coron and B. d’Andréa Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterogeneous Media 4 (2009) 177-187. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Birkhäuser (2016). [Google Scholar]
  4. G. Bastin, J.-M. Coron and A. Hayat, Feedforward boundary control of 2 × 2 nonlinear hyperbolic systems with application to Saint-Venant equations. Eur. J. Control 57 (2021) 41-53. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J. Mathématiques Pures Appi. 86 (2006) 362-368. [CrossRef] [Google Scholar]
  6. D. Bresch and P. Noble, Mathematical justification of a shallow water model. Methods Appi. Anal. 14 (2007) 87-118. [CrossRef] [Google Scholar]
  7. S.A. Chin-Bing, P.M. Jordan and A. Warn-Varnas, A note on the viscous, 1D shallow water equations: traveling wave phenomena. Mech. Res. Commun. 38 (2011) 382-387. [CrossRef] [Google Scholar]
  8. J.M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513-554. [CrossRef] [EDP Sciences] [Google Scholar]
  9. J.-M. Coron, Control and Nonlinearity. Mathematical Surveys and Monographs, Volume 136 American Mathematical Society (2007). [Google Scholar]
  10. J.-M. Coron, B. d’Andréa Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Autom. Control 52 (2007) 2-11. [CrossRef] [Google Scholar]
  11. J.-M. Coron, A. Hayat, S. Xiang and C. Zhang, Stabilization of the linearized water tank system. Arch. Ratl. Mech. Anal. 244 (2022) 1019-1097. [CrossRef] [Google Scholar]
  12. J. de Halleux and G. Bastin, Stabilization of Saint-Venant equations using riemann invariants: application to waterways with mobile spillways. IFAC Proc. 35 (2002) 131-136. [CrossRef] [Google Scholar]
  13. A. Diagne, M. Diagne, S. Tang and M. Krstic, Backstepping stabilization of the linearized Saint-Venant-Exner model. Automatica 76 (2017) 345-354. [CrossRef] [Google Scholar]
  14. M. Diagne, S.-X. Tang, A. Diagne and M. Krstic, Control of shallow waves of two unmixed fluids by backstepping. Annu. Rev. Control 44 (2017) 211-225. [CrossRef] [Google Scholar]
  15. V. Dos Santos, G. Bastin, J.-M. Coron and B. d’Andréa-Novel, Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments. Automatica 44 (2008) 1310-1318. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid. Proceedings of the 1999 European Control Conference (ECC) (1999) 3232-3237. [CrossRef] [Google Scholar]
  17. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow-water: numerical validation. Discr. Continu. Dyn. Syst. Ser. B 1 (2001) 89-102. [Google Scholar]
  18. A. Hayat and P. Shang, A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope. Automatica 100 (2019) 2-60. [Google Scholar]
  19. A. Hayat and P. Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm. J. Math. Pures Appl. 153 (2021) 187-212. [CrossRef] [MathSciNet] [Google Scholar]
  20. I. Karafyllis and M. Krstic, Global stabilization of a class of nonlinear reaction-diffusion PDEs by boundary feedback. SIAM J. Control Optim. 57 (2019) 3723-3748. [CrossRef] [MathSciNet] [Google Scholar]
  21. I. Karafyllis and M. Krstic, Global stabilization of compressible flow between two moving pistons. SIAM J. Control Optim. 60 (2022) 1117-1142. [CrossRef] [MathSciNet] [Google Scholar]
  22. I. Karafyllis and M. Krstic, Spill-free transfer and stabilization of viscous liquid. IEEE Trans. Autom. Control 67 (2022) 4585-4597. [CrossRef] [Google Scholar]
  23. I. Karafyllis, F. Vokos and M. Krstic, Output-feedback control of viscous liquid-tank system and its numerical approximation. To appear in Automatica (see also arXiv:2201.13272 [math.OC]). [Google Scholar]
  24. P.E. Kloeden, Global existence of classical solutions in the dissipative shallow water equations. SIAM J. Math. Anal. 16 (1985) 301-315. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. Lannes, The Water Waves Problem. Mathematical Analysis and Asymptotics. American Mathematical Society (2013). [Google Scholar]
  26. X. Litrico and V. Fromion, Boundary control of linearized Saint-Venant equations oscillating modes. Automatica 42 (2006) 967-972. [CrossRef] [MathSciNet] [Google Scholar]
  27. C. Mascia and F. Rousset, Asymptotic stability of steady-states for Saint-Venant equations with real viscosity. in C. Calgaro, J.-F. Coulombel and T. Goudon (Eds), Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Mechanics Birkhäuser (2006) 155-162. [Google Scholar]
  28. N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Autom. Control 47 (2002) 594-609. [CrossRef] [Google Scholar]
  29. C. Prieur and J. de Halleux, Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Syst. Control Lett. 52 (2004) 167-178. [Google Scholar]
  30. I.H. Shames, Mechanics of Fluids 2nd Edition McGraw-Hill International Editions (1989). [Google Scholar]
  31. L. Sundbye, Global existence for the Dirichlet problem for the viscous shallow water equations. J. Math. Anal. Appl. 202 (1996) 236-258. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flows. Birkhauser (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.