Open Access
Volume 28, 2022
Article Number 46
Number of page(s) 20
Published online 07 July 2022
  1. F. Ammar-Khodja, A. Bader and A. Benabdallah, Dynamic stabilization of systems via decoupling techniques. ESAIM: COCV 4 (1999) 577–593. [EDP Sciences] [Google Scholar]
  2. K. Ammari, F. Shel and L Tebou, Regularity and stability of the semigroup associated with some interacting elastic systems I: a degenerate damping case. J. Evol. Equ. 21 (2021) 4973–5002. [CrossRef] [MathSciNet] [Google Scholar]
  3. W. Arendt and C.J.K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306 (1988), 837–852. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Borichev and Y. Tomilov, Optimal polynormial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Brezis, Analyse fonctionnelle. Theorie et Applications. Masson, Paris (1983). [Google Scholar]
  6. C. Bright, The Quartic Formula Derivation, Technical Report, University of Waterloo (2012). Available at [Google Scholar]
  7. G. Chen and D.L. Russell, A mathematical model for linear elastic systems with structural damping. Quart. Appl. Math. 39 (1981/82) 433–454. [Google Scholar]
  8. S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989) 15–55. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case 0 < a < 2. Proc. AMS 110 (1990) 401–415. [Google Scholar]
  10. R. Denk and R. Racke, Lp-resolvent estimates and time decay for generalized thermoelastic plate equations. Electron. J. Diff. Eqs. 48 (2006) 1–16. [Google Scholar]
  11. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer (2000). [Google Scholar]
  12. A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps. Port. Math. 46 (1989) 245–258. [Google Scholar]
  13. A. Haraux (on ResearchGate), Avant Internet, pp. 36–41. [Google Scholar]
  14. F.L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. [Google Scholar]
  15. F. Huang, On the holomorphic property of the semigroup associated with linear elastic systems with structural damping. Acta Math. Sci. (English Ed.) 5 (1985) 271-277. [Google Scholar]
  16. F. Huang, On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control Optim. 26 (1988) 714–724. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Huang and K. Liu, Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping. Ann. Diff. Eqs. 4 (1988) 411–424. [Google Scholar]
  18. J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, ZAMP 64 (2013) 1145–1159. [Google Scholar]
  19. J. Hao, Z. Liu and J. Yong, Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations. J. Differ. Equ. 259 (2015) 4763–4798. [CrossRef] [Google Scholar]
  20. I. Lasiecka and R. Triggiani, Factor spaces and implications on Kirchhoff equations with clamped boundary conditions. Abstr. Appl. Anal. 6 (2001) 441–488. [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Liu and Z. Liu, Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces. J. Differ. Equ. 141 (1997) 340–355. [CrossRef] [Google Scholar]
  22. Z. Liu and J. Yong, Qualitative properties of certain Co semigroups arising in elastic systems with various dampings. Adv. Diff. Equ. 3 (1998) 643–686. [Google Scholar]
  23. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems. Chapman and Hall/CRC (1999). [Google Scholar]
  24. B.E. Meserve, Fundamental Concepts of Algebra. Cambridge, Addison-Wesley (1953). [Google Scholar]
  25. J.E. Munoz Rivera and R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems. J. Differential Equ. 127 (1996) 454–483. [CrossRef] [Google Scholar]
  26. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
  27. J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857. [Google Scholar]
  28. S. Taylor, Ph.D. Thesis, Chapter "Gevrey semigroups", School of Mathematics, University of Minnesota (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.