Open Access
Volume 28, 2022
Article Number 50
Number of page(s) 39
Published online 20 July 2022
  1. G. Alberti, G. Bouchitté and G. Dal Maso, The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16 (2003) 299–333. [CrossRef] [Google Scholar]
  2. H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). xviii–434 pp. [Google Scholar]
  4. G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. (4) 135 (1984) 293–318. [Google Scholar]
  5. H. Bischof, A. Chambolle, D. Cremers and T. Pock, An algorithm for minimizing the Mumford-Shah functional. 2009 IEEE 12th International Conference on Computer Vision (2009). [Google Scholar]
  6. B. Bogosel and M. Foare, Numerical implementation in 1D and 2D of a shape optimization problem with Robin boundary conditions. Preprint [Google Scholar]
  7. G. Bouchitte and I. Fragalá, A duality theory for non-convex problems in the calculus of variations. Arch. Rati. Mech. Anal. 229 (2018) 361–415. [CrossRef] [Google Scholar]
  8. D. Bucur, G. Buttazzo and C. Nitsch, Two optimization problems in thermal insulation. Notices Amer. Math. Soc. 64 (2017) 830–835. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Bucur, G. Buttazzo and C. Nitsch, Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. (9) 107 (2017) 451–463. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Bucur and A. Giacomini, Shape optimization problems with Robin conditions on the free boundary. Ann. Inst. H. Poincare Anal. Non Linéaire 33 (2016) 1539–1568. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Bucur and S. Luckhaus, Monotonicity formula and regularity for general free discontinuity problems. Arch. Ratl. Mech. Anal. 211 (2014) 489–511. [CrossRef] [Google Scholar]
  12. D. Bucur, M. Nahon, C. Nitsch and C. Trombetti, Shape optimization of a thermal insulation problem. Preprint available at [Google Scholar]
  13. G. Buttazzo, An optimization problem for thin insulating layers around a conducting medium. Boundary control and boundary variations (Nice, 1986). Lecture Notes in Comput. Sci., 100, Springer, Berlin (1988) 91–95. [CrossRef] [Google Scholar]
  14. L.A. Caffarelli and D. Kriventsov, A free boundary problem related to thermal insulation. Comm.. Partial Differ. Equ. 41 (2016) 1149–1182. [CrossRef] [Google Scholar]
  15. A. Chambolle, Convex representation for lower semicontinuous envelopes of functionals in L1. J. Convex Anal. 8 (2001) 149–170. [MathSciNet] [Google Scholar]
  16. A. Chambolle, D. Cremers and E. Strekalovskiy, A Convex, Representation for the Vectorial Mumford-Shah Functional, in IEEE Conference on Computer Vision and Pattern Recognition (2012). [Google Scholar]
  17. A. Chambolle, V. Duval, G. Peyráe and C. Poon, Geometric properties of solutions to the total variation denoising problem. Inverse Probl. 33 (2017) 015002, 44 pp. [CrossRef] [Google Scholar]
  18. A. Chambolle and M. Novaga, Anisotropic and crystalline mean curvature flow of mean-convex sets. Annali Scuola Normale Superiore - Classe di Scienze (2021), p. 17. [Google Scholar]
  19. G. Dal Maso, M.G. Mora and M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets. J. Math. Pures Appl. (9) 79 (2000) 141–162. [CrossRef] [MathSciNet] [Google Scholar]
  20. T. De Pauw and D. Smets, On explicit solutions for the problem of Mumford and Shah. Commun. Contemp. Math. 1 (1999) 201–212. [CrossRef] [Google Scholar]
  21. G.B. Folland, Introduction to partial differential equations. Second edition. Princeton University Press, Princeton, NJ (1995). xii+324, pp. [Google Scholar]
  22. N. Fusco, An overview of the Mumford-Shah problem. Milan J. Math. 71 (2003) 95–119. [CrossRef] [MathSciNet] [Google Scholar]
  23. D. Kriventsov, A free boundary problem related to thermal insulation: flat implies smooth. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 78, 83 pp. [CrossRef] [Google Scholar]
  24. C. Labourie and E. Milakis, Higher integrability of the gradient for the Thermal Insulation problem. Preprint available at arXiv:2101.09692. [Google Scholar]
  25. F. Maggi, Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge (2012). xx+454 pp. [Google Scholar]
  26. M.G. Mora, Local calibrations for minimizers of the Mumford-Shah functional with a triple junction. Commun. Contemp. Math. 4 (2002) 297–326. [CrossRef] [Google Scholar]
  27. M.G. Mora and M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set. Ann. Inst. H. Poincare Anal. Non Linaire 18 (2001) 403–436. [CrossRef] [Google Scholar]
  28. M. Morini, Global calibrations for the non-homogeneous Mumford-Shah functional. Ann. Sci. Norm. Super. Pisa CI. Sci. (5) 1 (2002) 603–648. [Google Scholar]
  29. C. Scheven and T. Schmidt, BV supersolutions to equations of 1-Laplace and minimal surface type. J. Differ. Equ. 261 (2016) 1904–1932. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.