Open Access
Volume 28, 2022
Article Number 77
Number of page(s) 30
Published online 22 December 2022
  1. R.A. Adams and J.J. Fournier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
  2. M. Annunziato and A. Borzi, A Fokker-Planck control framework for multidimensional stochastic processes. J. Comput. Appi. Math. 237 (2013) 487–507. [CrossRef] [Google Scholar]
  3. M. Annunziato and A. Borzi, A Fokker-Planck control framework for stochastic systems. EMS Surv. Math. Sci. 5 (2018) 65–98. [CrossRef] [MathSciNet] [Google Scholar]
  4. M.S. Aronna and F. Tröltzsch, First and second order optimality conditions for the control of Fokker-Planck equations. ESAIM: COCV 27 (2021) 15. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J. Bartsch, A. Borzi, F. Fanelli and S. Roy, A theoretical investigation of Brockett’s ensemble optimal control problems. Calc. Variat. Partial Differ. Equ. 58 (2019) 1–34. [CrossRef] [Google Scholar]
  6. J. Bartsch, A. Borzi, F. Fanelli and S. Roy, A numerical investigation of Brockett’s ensemble optimal control problems. Numer. Math. 149 (2021) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Bartsch, G. Nastasi and A. Borzi, Optimal control of the Keilson-Storer caster equation in a Monte Carlo framework. J. Comput. Theor. Transport 50 (2021) 454–482. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bengfort, H. Malchow and F.M. Hilker, The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments. J. Math. Biol. 73 (2016) 683–704. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. A. Bensoussan, Stochastic Control by Functional Analysis Methods. Elsevier (2011). [Google Scholar]
  10. A. Borzi, The Fokker-Planck framework in the modeling of pedestrians’ motion, Chapter 6 in Crowd Dynamics, Volume 2, Modeling and Simulation in Science, Engineering and Technology, edited by L. Gibelli. Birkhäuser, Cham, Switzerland (2020) 111–131. [CrossRef] [Google Scholar]
  11. T. Breiten, K. Kunisch and L. Pfeiffer, Control strategies for the Fokker-Planck equation. ESAIM: COCV 24 (2018) 741–763. [CrossRef] [EDP Sciences] [Google Scholar]
  12. T. Breitenbach and A. Borzi, The Pontryagin maximum principle for solving Fokker-Planck optimal control problems. Comput. Optim. Appi. 76 (2020) 499–533. [CrossRef] [Google Scholar]
  13. T. Breitenbach and A. Borzi, A sequential quadratic Hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals. J. Dyn. Control Syst. 25 (2019) 403–435. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.W. Brockett, Minimum attention control, in Proceedings of the 36th IEEE Conference on Decision and Control 3 (1997) 2628–2632. [CrossRef] [Google Scholar]
  15. R.W. Brockett, Optimal control of the Liouville equation. Proceedings of the International Conference on Complex Geometry and Related Fields. AMS/IP Stud. Adv. Math. 39 (2007) 23–35. [CrossRef] [Google Scholar]
  16. R.W. Brockett, Notes on the control of the Liouville equation. Control of partial differential equations, Lecture Notes in Math. 2048. Springer, Heidelberg (2012) 101–129. [Google Scholar]
  17. B. Buonomo, D. Lacitignola and C. Vargas-De-Leon, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment. Math. Comput. Simul. 100 (2014) 88–102. [CrossRef] [Google Scholar]
  18. B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases. J. Biolog. Syst. 19 (2011) 263–279. [CrossRef] [Google Scholar]
  19. E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. [Google Scholar]
  20. E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver. 117 (2015) 3–44. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Chipot, Elements of Nonlinear Analysis. Springer Science & Business Media (2000). [Google Scholar]
  22. L.C. Evans, Partial differential equations. Graduate Stud. Math. 19 (1998) 7. [Google Scholar]
  23. A. Fleig and R. Guglielmi, Optimal control of the Fokker-Planck equation with space-dependent controls. J. Optim. Theory Appl. 174 (2017) 408–427. [Google Scholar]
  24. D.A. Gomes and J. Saude, Mean field games models - a brief survey. Dyn. Games Appl. 4 (2014) 110–154. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Grandits, R.M. Kovacevic and V.M. Veliov, Optimal control and the value of information for a stochastic epidemiological SIS-model. J. Math. Anal. Appl. 476 (2019) 665–695. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Han, Z. Chang and X. Meng, Asymptotic dynamics of a stochastic SIR epidemic system affected by mixed nonlinear incidence rates. Complexity (2020) 2020. [Google Scholar]
  27. J.M. Lasry and P.L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications (Vol. 1). Springer Science & Business Media, Berlin Heidelberg, (1972). [Google Scholar]
  29. H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls. SIAM J. Control Optim. 48 (2009) 2366–2387. [CrossRef] [MathSciNet] [Google Scholar]
  30. H. Lou and J. Yong, Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Math. Control Related Fields 8 (2018) 57–88. [CrossRef] [MathSciNet] [Google Scholar]
  31. X. Mao, Stochastic Differential Equations and Applications. Elsevier (2007). [Google Scholar]
  32. A. Röosch and D. Wachsmuth, Numerical verification of optimality conditions. SIAM J. Control Optim. 47 (2008) 2557–2581. [CrossRef] [MathSciNet] [Google Scholar]
  33. H. Risken, Fokker-Planck Equation. Springer, Berlin, Heidelberg (1996). [Google Scholar]
  34. S. Roy, M. Annunziato, A. Borzi and C. Klingenberg, A Fokker-Planck approach to control collective motion. Comput. Optim. Appl. 69 (2018) 423–459. [CrossRef] [MathSciNet] [Google Scholar]
  35. S. Roy, M. Annunziato and A. Borzi, A Fokker-Planck feedback control-constrained approach for modelling crowd motion. J. Comput. Theor. Transport 45 (2016) 442–458. [CrossRef] [MathSciNet] [Google Scholar]
  36. S. Roy, A. Borzi and A. Habbal, Pedestrian motion modelled by Fokker-Planck Nash games. Royal Soc. Open Sci. 4 (2017) 170648. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Schienbein and H. Gruler, Langevin equation, Fokker-Planck equation and cell migration. Bull. Math. Biol. 55 (1993) 585–608. [Google Scholar]
  38. R.K. Tagiyev, Optimal control by the coefficients of a parabolic equation. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 24 (2004) 247–256. [MathSciNet] [Google Scholar]
  39. R.K. Tagiyev, On optimal control of the hyperbolic equation coefficients. Autom. Remote Control 73 (2012) 1145–1155. [CrossRef] [MathSciNet] [Google Scholar]
  40. D. Wachsmuth, The regularity of the positive part of functions in L2 (I; H1 (Q)) U H1(I; H1 (Q)*) with applications to parabolic equations. Comment. Math. Univers. Carolinae 57 (2016) 327–332. [Google Scholar]
  41. Z. Wu, J. Yin and C. Wang, Elliptic & Parabolic Equations. World Scientific (2006). [Google Scholar]
  42. Y. Zhang, Y. Li, Q. Zhang and A. Li, Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules. Physica A 501 (2018) 178–187. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.