Open Access
Volume 28, 2022
Article Number 76
Number of page(s) 30
Published online 22 December 2022
  1. A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18 (2012) 21–44. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry. Cambridge University Press (2019). [Google Scholar]
  3. A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, 87. Springer-Verlag Berlin-Heidelberg (2004). [Google Scholar]
  4. F. Albertini and D. D’Alessandro, Time optimal simultaneous control of two level quantum systems. Automatica 74 (2016) 55–62. [CrossRef] [Google Scholar]
  5. F. Albertini and D. D’Alessandro, On symmetries in time optimal control, sub-Riemannian geometries and the K — P problem. J. Dyn. Control Syst. 24 (2018) 13–38. [CrossRef] [MathSciNet] [Google Scholar]
  6. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metric on S3, SO(3) and SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [CrossRef] [MathSciNet] [Google Scholar]
  7. V.N. Berestovskii and I.A. Zubareva, Sub-Riemannian distance in the Lie groups SU(2) and SO(3), Siberian Adv. Math. 26 (2016) 77–89. [CrossRef] [MathSciNet] [Google Scholar]
  8. V.N. Berestovskii and I.A. Zubareva, Sub-Riemannian distance on the Lie group SL(2). Sibirsk. Mat. Zh 58 (2017) 16–27. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Beschastnyi, Y. Sachkov, Geodesics in the sub-Riemannian problem on the group SO(3). Sb. Math. 207 (2016) 915–941. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Biggs, Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups. Commun. Math. 25 (2017) 99–135. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Baudoin and G. Cho, The subelliptic heat kernel of the octonionic anti-de Sitter fibration. Symmetry Integrability Geom. Methods Appi. 17 (2021). [Google Scholar]
  12. F. Baudoin and G. Cho, The subelliptic heat kernel of the octonionic Hopf fibration. Potential Anal. 55 (2021) 211–228. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.E. Bredon, Introduction to Compact Transformation Groups. Academic Press, New York, London (1972) [Google Scholar]
  14. D.-C. Chang, I. Markina and A. Vasil’ev, Sub-Lorentzian geometry on anti-de Sitter space. J. Math. Pures Appi. 90 (2008) 82–110. [CrossRef] [Google Scholar]
  15. D. D’Alessandro and B. Sheller, On K-P sub-Riemannian problems and their cut locus, in Proceedings European Control Conference (2019). [Google Scholar]
  16. S.G. Dani, Actions of automorphism groups of Lie groups. Handbook of group actions. Vol. IV, 529-562, Adv. Lect. Math. (ALM), 41, Int. Press, Somerville, MA (2018). [Google Scholar]
  17. J. Dieudonné, On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua. Mem. Amer. Math. Soc. 2 (1951), vi+122 pp. [Google Scholar]
  18. M.P. Do Carmo, Riemannian Geometry, Mathematics: Theory and Applications, Birkhäuser Boston (1992). [Google Scholar]
  19. M. Grochowski, Connections on bundles of horizontal frames associated with contact sub-pseudo-Riemannian manifolds. J. Geom. Phys. 146 (2019) 103518. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Grochowski and W. Krynéski, Invariants of contact sub-pseudo-Riemannian structures and Einstein-Weyl geometry. in Variational Methods in Imaging and Geometric Control, Radon Ser. Comput. Appl. Math., 18, De Gruyter, Berlin (2017) 434–453. [Google Scholar]
  21. K.Y. Ha and J.B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282 (2009) 868–898. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978). [Google Scholar]
  23. A.P. Mashtakov and Y.L. Sachkov, Integrability of left-invariant sub-Riemannian structures on the special linear group SL2(R). Differ. Equ. 50 (2014) 1541–1547. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Montgomery, A Tour of sub-Riemannian Geometry, their Geodesics and Applications. Mathematical Surveys and Monographs, Vol. 91, American Mathematical Society (2002). [Google Scholar]
  25. B. Sheller, Symmetry Reduction in K — P Problems, Ph.D. Thesis, Department of Mathematics, Iowa State University (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.