Open Access
Issue |
ESAIM: COCV
Volume 28, 2022
|
|
---|---|---|
Article Number | 68 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/cocv/2022058 | |
Published online | 03 November 2022 |
- M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS Project Version 1.5. Arch. Numer. Softw. 3 (2015) 9-23. [Google Scholar]
- H. Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA (1995). [Google Scholar]
- H. Amann, Maximal regularity for non autonomous evolution equations. Adv. Nonlinear Stud. 4 (2004) 417-430. [CrossRef] [MathSciNet] [Google Scholar]
- H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd edn., Springer, Cham (2017), with a foreword by Hédy Attouch. [CrossRef] [Google Scholar]
- L. Bonifacius and I. Neitzel, Second order optimality conditions for optimal control of quasilinear parabolic equations. Math. Control Relat. Fields 8 (2018) 1-34. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research. Springer-Verlag, New York (2000). DOI: 10.1007/978-1-4612-1394-9. [Google Scholar]
- F. Campbell and G.I. Allen, Within group variable selection through the Exclusive Lasso. Electr. J. Stat. 11 (2017) 4220-4257. [Google Scholar]
- E. Casas, A review on sparse solutions in optimal control of partial differential equations. SeMA J. 74 (2017) 319-344. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and K. Chrysafìnos, Analysis and optimal control of some quasilinear parabolic equations. Math. Control Related Fields 8 (2018) 607-623. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and K. Chrysafìnos, Numerical analysis of quasilinear parabolic equations under low regularity assumptions. Numer. Math. 143 (2019) 749-780. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28-63. [Google Scholar]
- E. Casas, R. Herzog and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122 (2012) 645-669. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional. SIAM J. Optim. 22 (2012) 795-820. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas, R. Herzog and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM: COCV 23 (2017) 263-295. [Google Scholar]
- E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339-364. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces. ESAIM: COCV 22 (2016) 355-370. [Google Scholar]
- E. Casas and M. Mateos, Critical cones for sufficient second order conditions in PDE constrained optimization. SIAM J. Optim. 30 (2020) 585-603. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas, M. Mateos and A. Rosch, Finite element approximation of sparse parabolic control problems. Math. Control Relat. Fields 7 (2017) 393-417. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas, M. Mateos and A. Rosch, Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity. Comput. Optim. Appl. 70 (2018) 239-266. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas, C. Ryll and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation. SIAM J. Control Optim. 53 (2015) 2168-2202. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261-279. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and F. Troöltzsch, Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls, SIAM J. Control Optim. 52 (2014) 1010-1033. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and F. Tröoltzsch, State-constrained semilinear elliptic optimization problems with unrestricted sparse controls. Math. Control Relat. Fields 10 (2020) 527-546. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and D. Wachsmuth, First and second order conditions for optimal control problems with an L0 term in the cost functional. SIAM J. Control Optim. 58 (2020) 3486-3507. [CrossRef] [MathSciNet] [Google Scholar]
- C. Christof and G. Wachsmuth, No-gap second-order conditions via a directional curvature functional. SIAM J. Optim. 28 (2018) 2097-2130. [CrossRef] [MathSciNet] [Google Scholar]
- C. Clason, V.H. Nhu and A. Rosch, No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation, ESAIM: COCV 27 (2021) Paper No. 62, 35. [CrossRef] [EDP Sciences] [Google Scholar]
- J.C. de Los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybernet. 37 (2008) 5-38. [MathSciNet] [Google Scholar]
- R.E. Edwards, Functional analysis. Theory and applications. Holt, Rinehart and Winston, New York-Toronto-London (1965). [Google Scholar]
- I. Ekeland and R. Témam, Convex analysis and variational problems, Classics in Applied Mathematics, vol. 28, English edn., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999). [Google Scholar]
- K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679-687. [Google Scholar]
- R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equ. 247 (2009) 1354-1396. [Google Scholar]
- R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943-963. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hieber and J. Rehberg, Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains. SIAM J. Math. Anal. 40 (2008) 292-305. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45-61. [Google Scholar]
- M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints. Vol. 23 of Math. Modell: Theory Appl.. Springer, New York (2009). [Google Scholar]
- F. Hoppe and I. Neitzel, Convergence of the SQP method for quasilinear parabolic optimal control problems. Optim. Eng. (2020). DOI: 10.1007/s11081-020-09547-2. [Google Scholar]
- F. Hoppe and I. Neitzel, Optimal control of quasilinear parabolic PDEs with state constraints (2020), accepted for publication in SICON. Available as INS Preprint No. 2004. [Google Scholar]
- F. Hoppe and I. Neitzel, A-posteriori reduced basis error-estimates for a semi-discrete in space quasilinear parabolic PDE. Comput. Optim. Appl. (2021). DOI: 10.1007/s10589-021-00299-y. [Google Scholar]
- A.D. Ioffe, Necessary and sufficient conditions for a local minimum. III. Second order conditions and augmented duality. SIAM J. Control Optim. 17 (1979) 266-288. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ito and K. Kunisch, Optimal control with Lp(Q), p ϵ [0, 1), control cost. SIAM J. Control Optim. 52 (2014) 1251-1275. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kowalski, Sparse regression using mixed norms. Appl. Comput. Harmon. Anal. 27 (2009) 303-324. [CrossRef] [MathSciNet] [Google Scholar]
- K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078-3108. [Google Scholar]
- J.-L. Lions, Optimal control of systems governed by partial differential equations, Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin (1971). [Google Scholar]
- A. Logg, K.-A. Mardal, G.N. Wells et al., Automated Solution of Differential Equations by the Finite Element Method. Springer (2012). [Google Scholar]
- M.M. Mökelö and P. Neittaanmöki, Nonsmooth optimization. World Scientific Publishing Co., Inc., River Edge, NJ (1992). analysis and algorithms with applications to optimal control. [Google Scholar]
- F. Mannel and A. Rund, A hybrid semismooth quasi-Newton method for nonsmooth optimal control with PDEs. Optim. Eng. (2020). [Google Scholar]
- H. Meinlschmidt, C. Meyer and J. Rehberg, Optimal control of the thermistor problem in three spatial dimensions, Part 1: Existence of optimal solutions. SIAM J. Control Optim. 55 (2017) 2876-2904. [CrossRef] [MathSciNet] [Google Scholar]
- H. Meinlschmidt, C. Meyer and J. Rehberg, Optimal control of the thermistor problem in three spatial dimensions. Part 2: Optimality conditions. SIAM J. Control Optim. 55 (2017) 2368-2392. [CrossRef] [MathSciNet] [Google Scholar]
- H. Meinlschmidt and J. Rehberg, Holder-estimates for non-autonomous parabolic problems with rough data. Evol. Equ. Control Theory 5 (2016) 147-184. [CrossRef] [MathSciNet] [Google Scholar]
- N. Parikh and S. Boyd, Proximal algorithms. Foundations and Trends® in Optimization 1 (2014) 127-239. [CrossRef] [Google Scholar]
- K. Pieper, Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. Dissertation, Technische Universitat Munchen (2015). [Google Scholar]
- W. Rudin, Reelle und komplexe Analysis, R. Oldenbourg Verlag, Munich (1999), translated from the third English (1987) edition by Uwe Krieg. [Google Scholar]
- A. Schindele and A. Borzi, Proximal methods for elliptic optimal control problems with sparsity cost functional. Appl. Math. 7 (2016) 967-992. [CrossRef] [Google Scholar]
- A. Schindele and A. Borzi, Proximal schemes for parabolic optimal control problems with sparsity promoting cost functionals. Internat. J. Control 90 (2017) 2349-2367. [CrossRef] [MathSciNet] [Google Scholar]
- C. Schneider and G. Wachsmuth, Regularization and discretization error estimates for optimal control of ODEs with group sparsity. ESAIM: COCV 24 (2018) 811-834. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Sprekels and F. Tröltzsch, Sparse optimal control of a phase field system with singular potentials arising in the modeling of tumor growth. ESAIM: COCV 27 (2021) Paper No. S26, 27. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159-181. [CrossRef] [MathSciNet] [Google Scholar]
- R. Tibshirani, Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288. [MathSciNet] [Google Scholar]
- F. Tröltzsch, Optimal control of partial differential equations. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). applications, Translated from the 2005 German original by Jurgen Sprekels. [CrossRef] [Google Scholar]
- D. Wachsmuth and G. Wachsmuth, Second-order conditions for non-uniformly convex integrands: quadratic growth in L1 (2021). preprint arXiv:2111.10238 [math.OC]. [Google Scholar]
- G. Wachsmuth, A guided tour of polyhedric sets: basic properties, new results on intersections, and applications. J. Convex Anal. 26 (2019) 153-188. [MathSciNet] [Google Scholar]
- M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. Ser. B 68 (2006) 49-67. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.