Open Access
Issue |
ESAIM: COCV
Volume 28, 2022
|
|
---|---|---|
Article Number | 67 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/cocv/2022065 | |
Published online | 03 November 2022 |
- B. Acikmese, J. Carson and L. Blackmore. Lossless convexifìcation of the soft landing optimal control problem with non-convex control bound and pointing constraints. IEEE Trans. Control Syst. Technol. 21 (2013) 2104–2113. [CrossRef] [Google Scholar]
- B. Acikmese and S. Ploen Convex programming approach to powered descent guidance for mars landing. J. Guidance Control Dyn. 30 (2007) 1353–1366. [CrossRef] [Google Scholar]
- J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings and M. Diehl CasADi — a software framework for nonlinear optimization and optimal control. Math. Programm. Comput. 11 (2019) 1–36. [CrossRef] [Google Scholar]
- L. Blackmore Autonomous precision landing of space rockets. The Bridge 46 (2016) 15–20. [Google Scholar]
- L. Blackmore, B. Açikmeçe and D.P. Scharf Minimum-landing-error powered-descent guidance for mars landing using convex optimization. J. Guidance Control Dyn. 33 (2010) 1161–1171. [CrossRef] [Google Scholar]
- Z. Chen, J.-B. Caillau and Y. Chitour, L1-minimization for mechanical systems. SIAM J. Control Optim. 54 (2016) 1245–1265. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Chitour, F. Jean and E. Trélat Genericity results for singular curves. J. Differ. Geom. 73 (2006) 45–73. [Google Scholar]
- F. Gazzola and E.M. Marchini, A minimal time optimal control for a drone landing problem. ESAIM: COCV 27 (2021) 99. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Leitmann On a class of variational problems in rocket flight. J. Aerospace Sci. 26 (1959) 586–591. [CrossRef] [Google Scholar]
- C. Leparoux, B. Hérissé and F. Jean Optimal planetary landing with pointing and glide-slope constraints. 2022 61th IEEE Conference on Decision and Control (CDC), 2022. [Google Scholar]
- P. Lu Propellant-optimal powered descent guidance. J. Guidance Control Dyn. 41 (2018) 813–826. [CrossRef] [Google Scholar]
- L. Ma, K. Wang, Z. Xu, Z. Shao, Z. Song and L.T. Biegler Multi-point powered descent guidance based on optimal sensitivity. Aerospace Sci. Technol. 86 (2019) 465–477. [CrossRef] [Google Scholar]
- J. Meditch On the problem of optimal thrust programming for a lunar soft landing. IEEE Trans. Automatic Control 9 (1964) 477–484. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ménou, E. Bourgeois and N. Petit, Fuel-optimal program for atmospheric vertical powered landing. in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, 6312–6319. [CrossRef] [Google Scholar]
- A. Miele The calculus of variations in applied aerodynamics and flight mechanics. Math. Sci. Eng. 5 (1962) 99–170. [CrossRef] [Google Scholar]
- S. Ploen, B. Acikmese and A. Wolf, A comparison of powered descent guidance laws for mars pinpoint landing. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August 2006. [Google Scholar]
- H.M. Robbins Optimality of intermediate-thrust arcs of rocket trajectories. AIAA J. 3 (1965) 1094–1098. [CrossRef] [MathSciNet] [Google Scholar]
- H. Schättler The local structure of time-optimal trajectories in dimension three under generic conditions. SIAM J. Control Optim. 26 (1988) 899–918. [CrossRef] [MathSciNet] [Google Scholar]
- R. Sostaric and J. Rea, Powered descent guidance methods for the moon and mars. in AIAA Guidance, Navigation, and Control Conference and Exhibit, June 2005. [Google Scholar]
- H.J. Sussmann The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case. SIAM J. Control Optim. 25 (1967) 868–904. [Google Scholar]
- U. Topcu, J. Casoliva and K. Mease, Fuel efficient powered descent guidance for mars landing. in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005. [Google Scholar]
- U. Topcu, J. Casoliva and K.D. Mease Minimum-fuel powered descent for mars pinpoint landing. J. Spacecraft Rockets 44 (2007) 324–331. [CrossRef] [Google Scholar]
- E. Trélat Optimal control and applications to aerospace: Some results and challenges. J. Optim. Theory Appl. 154 (2012) 713–758. [CrossRef] [MathSciNet] [Google Scholar]
- R. Vinter, Optimal Control. Modern Birkhauser Classics. Springer, 2010. [Google Scholar]
- A.A. Wolf, B. Acikmese, Y. Cheng, J. Casoliva, J.M. Carson and M.C. Ivanov, Toward improved landing precision on mars. in 2011 Aerospace Conference, March 2011. [Google Scholar]
- W.P. Ziemer, Modern real analysis, Vol. 278 of Graduate Texts in Mathematics, 2nd edn. Springer, Cham, 2017. With contributions by Monica Torres. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.