Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 62
Number of page(s) 18
DOI https://doi.org/10.1051/cocv/2022056
Published online 26 September 2022
  1. A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). Control Theory and Optimization, II. [CrossRef] [Google Scholar]
  2. V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Contemporary Soviet Mathematics. Consultants Bureau, New York (1987). Translated from the Russian by V.M. Volosov. [Google Scholar]
  3. K. Ball, Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991) 351-359. [CrossRef] [Google Scholar]
  4. T. Bayen, Optimisation de forme dans la classe des corps de largeur constante et des rotors. Theses, Université Pierre et Marie Curie - Paris VI (2007). [Google Scholar]
  5. T. Bayen, Analytical parameterization of rotors and proof of a Goldberg conjecture by optimal control theory. SIAM J. Control Optim. 47 (2009) 3007-3036. [CrossRef] [Google Scholar]
  6. T. Bayen and J.-B. Hiriart-Urruty, Objets convexes de largeur constante (en 2D) ou d’épaisseur constante (en 3D): du neuf avec du vieux. Ann. Sci. Math. Québec 36 (2013) 17-42. [Google Scholar]
  7. S. Blatt, A reverse isoperimetric inequality and its application to the gradient flow of the Helfrich functional (2020). arXiv:2009.12273 [math.AP] [Google Scholar]
  8. A. Borisenko and K. Drach, Isoperimetric inequality for curves with curvature bounded below. Math. Notes 95 (2014) 590-598. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Chernov, K. Drach and K. Tatarko, A sausage body is a unique solution for a reverse isoperimetric problem. Adv. Math. 353 (2019) 431-445. [CrossRef] [MathSciNet] [Google Scholar]
  10. B.V. Dekster, On reduced convex bodies. Israel J. Math. 56 (1986) 247-256. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Drach, On a solution of the reverse Dido problem in a class of convex surfaces of revolution. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 4 (2016) 7-12. [CrossRef] [Google Scholar]
  12. L. Esposito, N. Fusco and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4 (2005) 619-651. [Google Scholar]
  13. I. Ftouhi and J. Lamboley, Blaschke-Santalé diagram for volume, perimeter, and first Dirichlet eigenvalue. SIAM J. Math. Anal. 53 (2021) 1670-1710. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Gard, Reverse isoperimetric inequalities in R3. ProQuest LLC, Ann Arbor, MI (2012). Ph.D. thesis, The Ohio State University. [Google Scholar]
  15. P.M. Gruber and J.M. Wills, editors, Handbook of convex geometry. Vol. A, B. North-Holland Publishing Co., Amsterdam (1993). [Google Scholar]
  16. L. Hörmander, Notions of convexity, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2007). Reprint of the 1994 edition. [Google Scholar]
  17. R. Howard, Convex bodies of constant width and constant brightness. Adv. Math. 204 (2006) 241-261. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Howard and A. Treibergs, A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature. Rocky Mountain J. Math. 25 (1995) 635-684. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-M. Morvan, Generalized curvatures, volume 2 of Geometry and Computing. Springer-Verlag, Berlin (2008). [CrossRef] [Google Scholar]
  20. G. Paoli, A reverse quantitative isoperimetric type inequality for the Dirichlet Laplacian (2021). arXiv:2105.03243 [math.AP] [Google Scholar]
  21. L.A. Santaléo, Integral geometry and geometric probability. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition (2004). With a foreword by Mark Kac. [Google Scholar]
  22. R. Schneider, Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition (2014). [Google Scholar]
  23. E. Trélat, Singular trajectories and subanalyticity in optimal control and Hamilton-Jacobi theory. Rend. Semin. Mat. Univ. Politec. Torino 64 (2006) 97-109. [MathSciNet] [Google Scholar]
  24. F. Valentine, Convex sets. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Toronto-London (1964). [Google Scholar]
  25. Z. Zhang, Inequalities for curvature integrals in Euclidean plane. J. Inequalit. Appl. 2019 (2019) 1-12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.