Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 61
Number of page(s) 19
DOI https://doi.org/10.1051/cocv/2022054
Published online 14 September 2022
  1. E. Çınlar, vol. 261 of Probability and stochastics. Springer, New York (2011). [Google Scholar]
  2. S.N. Cohen and R.J. Elliott, Solutions of backward stochastic differential equations on Markov chains. Commun. Stoch. Anal. 2 (2008) 251–262. [MathSciNet] [Google Scholar]
  3. C. Donnelly, Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math Optim. 64 (2011) 155–169. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. He, J. Wang and J. Yan, Semimartingale Theory and Stochastic Calculus. Routledge, Abingdon, UK (2018). [Google Scholar]
  5. J.-F. Le Gall, Vol. 274 of Brownian motion, Martingales, and Stochastic Calculus. Springer, New York (2016). [CrossRef] [Google Scholar]
  6. S. Lv and Z. Wu, Stochastic maximum principle for forward-backward regime switching jump diffusion systems and applications to finance. Chin. Ann. Math. Ser. B 39 (2018) 773–790. [CrossRef] [Google Scholar]
  7. S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J.Control Optim. 28 (1990) 966–979. [CrossRef] [MathSciNet] [Google Scholar]
  8. P.E. Protter, Stochastic Integration and Differential Equations. Springer, Heidelberg (2005). [Google Scholar]
  9. Y. Song, S. Tang and Z. Wu, The maximum priniple for progressive optimal stochastic control problems with random jumps. SIAM J. Control Optim. 58 (2020) 2171–2187. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J.Control Optim. 32 (1994) 1447–1475. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications. Syst. Control Lett. 61 (2012) 911–917. [CrossRef] [Google Scholar]
  12. J. Yan, Introduction to Martingales and Stochastic Integrals. Shanghai Sci. and Tech. Publ. House, Shanghai (1981). [Google Scholar]
  13. Q. Zhang, Stock trading: An optimal selling rule. SIAM J. Control. Optim. 40 (2001) 64–87. [CrossRef] [MathSciNet] [Google Scholar]
  14. X. Zhang, R.J. Elliott and T.K. Siu, A stochastic maximum principle for a Markov regime-switching jump-diffusion model and its application to finance. SIAM J. Control Optim. 50 (2012) 964–990. [Google Scholar]
  15. X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type. SIAM J. Control. Optim. 56 (2018) 2563–2592. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.