Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 68 | |
Number of page(s) | 54 | |
DOI | https://doi.org/10.1051/cocv/2023047 | |
Published online | 11 August 2023 |
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000). [Google Scholar]
- J.M. Ball, Mathematical models of martensitic microstructure. Mater. Sci. Eng. A 378 (2004) 61–69. [CrossRef] [Google Scholar]
- J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389–450. [CrossRef] [Google Scholar]
- P. Bella and M. Goldman, Nucleation barriers at corners for a cubic-to-tetragonal phase transformation. Proc. Roy. Soc. Edinb. A: Math. 145 (2015) 715–724. [CrossRef] [Google Scholar]
- P. Bella and R.V. Kohn, Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67 (2014) 693–747. [CrossRef] [Google Scholar]
- K. Bhattacharya, Self-accommodation in martensite. Arch. Rational Mech. Anal. 120 (1992) 201–244. [CrossRef] [MathSciNet] [Google Scholar]
- K. Bhattacharya, Microstructure of Martensite: Why it Forms and how it Gives Rise to the Shape-memory Effect. Oxford Series on Materials Modeling. Oxford University Press (2003). [Google Scholar]
- K. Bhattacharya and R.V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Rational Mech. Anal. 139 (1997) 99–180. [CrossRef] [MathSciNet] [Google Scholar]
- A. Capella and F. Otto. A rigidity result for a perturbation of the geometrically linear three-well problem. Commun. Pure Appl. Math. 62 (2009) 1632–1669. [CrossRef] [Google Scholar]
- A. Capella and F. Otto, A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy. Proc. Roy. Soc. Edinb. A: Math. 142 (2012) 273–327. [CrossRef] [Google Scholar]
- A. Chan and S. Conti, Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance. Math. Models Methods Appl. Sci. 25 (2015) 1091–1124. [CrossRef] [MathSciNet] [Google Scholar]
- I.V. Chenchiah and A. Schlömerkemper, Non-laminate microstructures in monoclinic-I martensite. Arch. Rational Mech. Anal. 207 (2013) 39–74. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chipot, Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747–767. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chipot, The appearance of microstructures in problems with incompatible wells and their numerical approach. Numer. Math. 83 (1999) 325–352. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chipot, C. Collins and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259–282. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1998) 237–277. [Google Scholar]
- M. Chipot and S. Müller, Sharp energy estimates to finite element approximation for non-convex problems. Unpublished, personal communication, 1997. [Google Scholar]
- M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in IUTAM Symposium on Variations of Domain and Free-Boundary Problems in Solid Mechanics. Springer (1999) 317–325. [CrossRef] [Google Scholar]
- R. Choksi, R.V. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201 (1999) 61–79. [CrossRef] [Google Scholar]
- S. Conti, Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53 (2000) 1448–1474. [CrossRef] [Google Scholar]
- S. Conti, Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90 (2008) 15–30. [CrossRef] [MathSciNet] [Google Scholar]
- S. Conti, J. Diermeier, D. Melching and B. Zwicknagl, Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys. ESAIM: Control Optim. Calc. Variations 26 (2020) 115. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Conti, J. Diermeier and B. Zwicknagl, Deformation concentration for martensitic microstructures in the limit of low volume fraction. Calc. Var. Partial Differ. Eq. 56 (2017) 16. [CrossRef] [Google Scholar]
- S. Conti, D. Faraco and F. Maggi, A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch. Rational Mech. Anal. 175 (2005) 287–300. [CrossRef] [MathSciNet] [Google Scholar]
- S. Conti and F. Theil, Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal. 178 (2005) 125–148. [CrossRef] [MathSciNet] [Google Scholar]
- S. Conti and B. Zwicknagl, Low volume-fraction microstructures in martensites and crystal plasticity. Math. Models Methods Appl. Sci. 26 (2016) 1319–1355. [CrossRef] [MathSciNet] [Google Scholar]
- B. Dacorogna, Direct Methods in the Calculus of Variations, Vol. 78. Springer (2007). [Google Scholar]
- G. Dolzmann, Variational Methods for Crystalline Microstructure – Analysis and Computation. Springer (2004). [Google Scholar]
- L. Grafakos, Classical Fourier Analysis, Vol. 2. Springer (2014). [CrossRef] [Google Scholar]
- Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11 (1963) 127–140. [CrossRef] [MathSciNet] [Google Scholar]
- B. Kirchheim, S. Müller and V. Šverák, Studying nonlinear PDE by geometry in matrix space, in Geometric Analysis and Nonlinear Partial Differential Equations. Springer (2003) 347–395. [CrossRef] [Google Scholar]
- H. Knüpfer and R.V. Kohn, Minimal energy for elastic inclusions. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 467 (2011) 695–717. [Google Scholar]
- H. Knüpfer, R.V. Kohn and F. Otto, Nucleation barriers for the cubic-to-tetragonal phase transformation. Commun. Pure Appl. Math. 66 (2013) 867–904. [CrossRef] [Google Scholar]
- H. Knüpfer and F. Nolte, Optimal shape of isolated ferromagnetic domains. SIAM J. Math. Anal. 50 (2018) 5857–5886. [CrossRef] [MathSciNet] [Google Scholar]
- H. Knüpfer and F. Otto, Nucleation barriers for the cubic-to-tetragonal phase transformation in the absence of self-accommodation. ZAMM-J. Appl. Math. Mech. 99 (2019) e201800179. [CrossRef] [Google Scholar]
- R.V Kohn and S. Müller, Branching of twins near an austenite—twinned-martensite interface. Philos. Mag. A 66 (1992) 697–715. [CrossRef] [Google Scholar]
- R.V Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47 (1994) 405–435. [CrossRef] [Google Scholar]
- R.V. Kohn and B. Wirth, Optimal fine-scale structures in compliance minimization for a uniaxial load. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 470 (2014) 20140432. [Google Scholar]
- R.V Kohn and B. Wirth, Optimal fine-scale structures in compliance minimization for a shear load. Commun. Pure Appl. Math. 69 (2016) 1572–1610. [CrossRef] [Google Scholar]
- A. Lorent, An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. ESAIM: Math. Model. Numer. Analys. 35 (2001) 921–934. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Lorent, The two-well problem with surface energy. Proc. Roy. Soc. Edinb. A: Math. 136 (2006) 795–805. [CrossRef] [Google Scholar]
- S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems. Springer (1999) 85–210. [CrossRef] [Google Scholar]
- F. Otto and T. Viehmann, Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy. Calc. Var. Partial Differ. Eq. 38 (2010) 135–181. [CrossRef] [Google Scholar]
- P. Pedregal, Parametrized Measures and Variational Principles, Vol. 30. Birkhauser, Basel (1997). [CrossRef] [Google Scholar]
- A. Rüland, The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity. Arch. Rational Mech. Anal. 221 (2016) 23–106. [CrossRef] [MathSciNet] [Google Scholar]
- A. Rüland, A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity. J. Elasticity 123 (2016) 137–177. [CrossRef] [MathSciNet] [Google Scholar]
- A. Rüland, J.M. Taylor and C. Zillinger, Convex integration arising in the modelling of shape-memory alloys: some remarks on rigidity, flexibility and some numerical implementations. J. Nonlinear Sci. 29 (2018) 2137–2184. [Google Scholar]
- A. Rüland and A. Tribuzio, On the energy scaling behaviour of a singularly perturbed Tartar square. Arch. Rational Mech. Anal. 243 (2022) 401–431. [CrossRef] [MathSciNet] [Google Scholar]
- A. Rüland, C. Zillinger and B. Zwicknagl, Higher Sobolev regularity of convex integration solutions in elasticity: the Dirichlet problem with affine data in int(Klc). SIAM J. Math. Anal. 50 (2018) 3791–3841. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schlömerkemper, I.V. Chenchiah, R. Fechte-Heinen and D. Wachsmuth, Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformations, in MATEC Web of Conferences, Vol. 33. EDP Sciences (2015), 02011. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Seiner, P. Plucinsky, V. Dabade, B. Benešová and R.D. James, Branching of twins in shape memory alloys revisited. J. Mech. Phys. Solids 141 (2020) 103961. [CrossRef] [MathSciNet] [Google Scholar]
- T.M. Simon, Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via h-measures. SIAM J. Math. Anal. 53 (2021) 4537–4567. [CrossRef] [MathSciNet] [Google Scholar]
- T.M. Simon, Rigidity of branching microstructures in shape memory alloys. Arch. Rational Mech. Anal. 241 (2021) 1707–1783. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.