Open Access
Volume 29, 2023
Article Number 67
Number of page(s) 40
Published online 11 August 2023
  1. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261–281. [CrossRef] [Google Scholar]
  2. L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields. Calculus of variations and nonlinear partial differential equations (2008) 1–41. [Google Scholar]
  3. L. Ambrosio, N. Gigli and G. Savaré,. Gradient Flows: in Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media (2008). [Google Scholar]
  4. V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Institut Fourier 16 (1966) 319–361. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Awi and W. Gangbo, A polyconvex integrand; Euler–Lagrange equations and uniqueness of equilibrium. Arch. Ration. Mech. Anal. 214 (2014) 143–182. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337–403. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.M. Ball. Progress and Puzzles in Nonlinear Elasticity. CISM, Vol. 516. Oxford Centre for Nonlinear PDE. [Google Scholar]
  8. J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics, and Dynamics. Springer Link, 3–59 (Jerry Marsden on the occasion of his birthday). [Google Scholar]
  9. T.B. Benjamin, The alliance of practical and analytical insight into the nonlinear problems of fluid mechanics, in Lecture Notes in Mathematics, Vol. 503. Springer-Verlag (1976) 8–29. [CrossRef] [Google Scholar]
  10. L.M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967) 200–217. [Google Scholar]
  11. Y. Brenier, Polar factorization and monotone rearrangement of vector–valued functions. Commin. Pure Appl. Math. 44 (1991) 375–417. [CrossRef] [Google Scholar]
  12. Y. Brenier, Connections between optimal transport, combinatorial optimization and hydrodynamics. ESAIM: M2AN 49 (2015) 1593–1605. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Y. Brenier, A combinatorial algorithm for the euler equations of incompressible flows. Comput. Methods Appl. Mech. Eng. 75 (1989). [Google Scholar]
  14. G.R. Burton, Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987) 225–253. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Celada and G. Dal Maso, Further remarks on the lower semicontinuity of polyconvex integrals. Ann. I.H.P. Analyse Non linéaire 11 (1994) 661–691. [Google Scholar]
  16. X. Chen, A. Jüngel and J.G. Liu, A Note on Aubin-Lions-Dubinskiĭ Lemmas. Acta Appl. Math. 133 (2014). [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616 (2008) 15–46. [MathSciNet] [Google Scholar]
  18. G. Csató, B. Dacorogna and O. Kneuss, Spectral properties of the Laplacian on bounded domains, in Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser. [Google Scholar]
  19. R.A. DeVore and R.C. Sharpley, Maximal functions measuring smoothness. Memoirs AMS 47 (1984). [Google Scholar]
  20. R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [Google Scholar]
  21. D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. (1970) 102–163. [CrossRef] [MathSciNet] [Google Scholar]
  22. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227–252. [CrossRef] [Google Scholar]
  23. L.C. Evans, O. Kneuss and H. Tran, Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models. Trans. AMS 368 (2016) 3389–3413. [Google Scholar]
  24. R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46 (1994) 607–643. [CrossRef] [MathSciNet] [Google Scholar]
  25. I. Fonseca, G. Leoni and J. Malÿ, Weak continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal. 178 (2005) 411–448. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Gangbo, M. Westdickenberg, Optimal transport for the system of isentropic Euler equations. Commun. PDEs 34 (2009) 1041–1073. [CrossRef] [Google Scholar]
  27. N. Ghoussoub, Y-H. Kim, H. Lavenant and A.Z. Palmer, A hidden convexity in nonlinear elasticity. Preprint. [Google Scholar]
  28. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces. Math. Zeitsch. 178 (1981) 297–329. [CrossRef] [Google Scholar]
  29. Y. Giga and T. Miyakawa, Solutions in Lr of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89 (1985) 267–281. [CrossRef] [Google Scholar]
  30. Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system. J. Diff. Equ. 62 (1986) 186–212. [CrossRef] [Google Scholar]
  31. N. Gigli and S.J.N. Mosconi, A variational approach to the Navier–Stokes equations. Bull. Sci. Math. 136 (2012) 256–276. [CrossRef] [MathSciNet] [Google Scholar]
  32. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed. Springer–Verlag, (1987). [Google Scholar]
  33. M.E. Gurtin and S.J. Spector, On stability and uniqueness in finite elasticity. Arch. Ration. Mech. Anal. 70 (1979) 153–165. [CrossRef] [Google Scholar]
  34. E. Ivar, On the variational principle. Ann. Institut Henri Poincare (C) Non Linear Anal. 28 (2011) 91–105. [CrossRef] [Google Scholar]
  35. E. Ivar, An inverse function theorem in Fréchet spaces. J. Math. Anal. Applic. 47 (1974) 324–353. [CrossRef] [Google Scholar]
  36. F. John, Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains. Commun. Pure Appl. Math. 25 (1972) 617–634. [CrossRef] [Google Scholar]
  37. H. Le Dret, The constitutive law of incompressible bodies and existence in incompressible nonlinear elasticity. Public. Lab. Analyse Numér. 2 (1983) 83049. [Google Scholar]
  38. P. Maremonti, On the Lp Helmholtz decomposition: a review of a result due to Solonnikov. Lithuanian Math. J. 58 (2018) 268–283. [CrossRef] [MathSciNet] [Google Scholar]
  39. C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer-Verlag (1966). [Google Scholar]
  40. S. Müller, Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris 311 (1990) 13–17. [Google Scholar]
  41. D. Preiss, Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91 (1990) 312–345. [CrossRef] [MathSciNet] [Google Scholar]
  42. J. Sivaloganathan and S.J. Spector, On the uniqueness of energy minimizers in finite elasticity. J. Elasticity 133 (2018) 73–103. [CrossRef] [MathSciNet] [Google Scholar]
  43. V.A. Solonnikov, Estimates for solutions of nonstationary Navier–Stokes equations. J. Sov. Math. 8 (1977) 467–529. [CrossRef] [Google Scholar]
  44. E.N. Spadaro, Non-uniqueness of minimizers for strictly polyconvex functionals. Arch. Ration. Mech. Anal. 193 (2009) 659–678. [CrossRef] [MathSciNet] [Google Scholar]
  45. E.M. Stein, Singular Integrals and Differentiability Properties of Functions, 5th ed. Princeton Mathematical Series. [Google Scholar]
  46. R. Temam, Navier–Stokes Equations. AMS Chelsea Publishing (1977). [Google Scholar]
  47. K. Zhang, Energy minimizers in nonlinear elastostatics and the implicit function theorem. Arch. Ration. Mech. Anal. 114 (1991) 95–117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.