Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/cocv/2023006 | |
Published online | 24 March 2023 |
- E. Acerbi and G. Buttazzo, On the limits of periodic Riemannian metrics. J. Anal. Math. 43 (1984) 183–201. [Google Scholar]
- A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge University Press (2019). [Google Scholar]
- M. Amar and E. Vitali, Homogenization of Periodic Finsler metrics. J. Convex Anal. 5 (1998) 171–186. [MathSciNet] [Google Scholar]
- D. Bao, S.-S. Chern and Z. Shen, Vol. 200 of An Introduction to Riemann-Finsler Geometry. Springer-Verlag, New York (2000). [CrossRef] [Google Scholar]
- A. Bonfiglioli, Homogeneous Carnot groups related to sets of vector fields. Bollettino dell'Unione Matematica Ital. 7-B (2004) 79–107. [Google Scholar]
- A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Berlin, Springer, Springer Monographs in Mathematics (2007). [Google Scholar]
- A. Briani and A. Davini, Monge solutions for discontinuous Hamiltonians. ESAIM: COCV 11 (2005) 229–251. [CrossRef] [EDP Sciences] [Google Scholar]
- D. Burago, Y.D. Burago and S.O. Ivanov, A Course in Metric Geometry. American Mathematical Society (2001). [Google Scholar]
- G. Buttazzo, L. De Pascale and I. Fragalà, Topological equivalence of some variational problems involving distances. Discrete Contin. Dinam. Syst. 7 (2001) 247–258. [CrossRef] [Google Scholar]
- G. Dal Maso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhauser Verlag, Basel (1993). [Google Scholar]
- G. De Cecco and G. Palmieri, Distanza intrinseca su una varietà Riemanniana di Lipschitz. Rend. Sem. Mat. Torino 46 (1988) 157–170. [Google Scholar]
- G. De Cecco and G. Palmieri, LIP manifolds: from metric to Finslerian structure. Math Z. 207 (1991) 223–243. [CrossRef] [MathSciNet] [Google Scholar]
- G. De Cecco and G. Palmieri, Intrinsic distance on a LIP Finslerian manifold. Rend. Accad. Naz. Sci. XL Mem. Mat. 17 (1993) 129–151. [MathSciNet] [Google Scholar]
- A. Garroni, M. Ponsiglione and F. Prinari, From 1-homogeneous supremal functionals to difference quotients: relaxation and T-convergence. Calc. Var. 27 (2006) 397–420. [CrossRef] [MathSciNet] [Google Scholar]
- C.-Y. Guo, Intrinsic geometry and analysis of Finsler structures. Ann. Matem. Pura Appl. 196 (2017) 1685–1693. [CrossRef] [Google Scholar]
- P. Hajlasz and P. Koskela, Sobolev met Poincaré, American Mathematical Society: Memoirs of the American Mathematical Society, American Mathematical Society (2000). [Google Scholar]
- E. Le Donne, Lecture notes on sub-Riemannian geometry. cvgmt.sns.it/paper/5339/version of February 2021. [Google Scholar]
- E. Le Donne, A primer on Carnot groups: homogeneous groups, CC spaces, and regularity of their isometries. Anal. Geometry Metric Spaces 5 (2017) 116–137. [CrossRef] [MathSciNet] [Google Scholar]
- E. Le Donne, D. Lučić and E. Pasqualetto, Universal infinitesimal Hilbertianity of sub-Riemannian manifolds. Potential Anal. (2022) 1–26, https://doi.org/10.1007/s11118-021-09971-8. [Google Scholar]
- V. Magnani, Towards differential calculus in stratified groups. J. Aust. Math. Soc. 95 (2013) 76–128. [CrossRef] [MathSciNet] [Google Scholar]
- V. Magnani, A. Pinamonti and G. Speight, Porosity and differentiability of Lipschitz maps from stratified groups to Banach homogeneous groups. Ann. Matem. Pura Appl. (1923-) 199 (2017) 1197–1220. [Google Scholar]
- R. Monti, Distances, boundaries and surface measures in Carnot-Carathéeodory spaces. PhD Thesis, University of Trento (2001). [Google Scholar]
- P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. (2) 129 (1989) 1–60. [CrossRef] [MathSciNet] [Google Scholar]
- S. Pauls, The large scale geometry of nilpotent Lie groups. Commun. Anal. Geometry 5 (2001) 951–982. [CrossRef] [Google Scholar]
- A. Pinamonti and G. Speight, Porosity, differentiability and Pansu's theorem. J. Geometric Anal. 27 (2017) 2055–2080. [CrossRef] [MathSciNet] [Google Scholar]
- K.T. Sturm, Is a diffusion process determined by its intrinsic metric?. Chaos Solitons Fract. 8 (1997) 1855–1860. [CrossRef] [Google Scholar]
- S. Venturini, Derivations of Distance Functions in ℝn. Preprint (1991). [Google Scholar]
- F. Warner, Vol. 94 of Foundations of differentiable manifolds and Lie groups. Springer-Verlag, New York-Berlin (1983). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.