Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 18
Number of page(s) 23
DOI https://doi.org/10.1051/cocv/2023010
Published online 03 March 2023
  1. N. Agram, A. Hilbert and B. Øksendal Singular control of SPDEs with space-mean dynamics. Math. Control Related Fields 10 (2020) 425. [MathSciNet] [Google Scholar]
  2. C. Bandle and H.A. Levine Fujita type phenomena for reaction-diffusion equations with convection like terms. Differ. Integral Equ. 7 (1994) 1169–1193. [Google Scholar]
  3. A. Bensoussan Stochastic maximum principle for distributed parameter systems. J. Franklin Inst. 315 (1983) 387–406. [Google Scholar]
  4. A. Bensoussan Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics 9 (1983) 169–222. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bensoussan Stochastic maximum principle for systems with partial information and application to the separation principle. Appl. Stoch. Anal. (1991) 157–172. [Google Scholar]
  6. A. Bensoussan, Stochastic Control of Partially Observable Systems. Cambridge University Press (2004). [Google Scholar]
  7. F.E. Benth On the positivity of the stochastic heat equation. Potential Anal. 6 (1997) 127–148. [CrossRef] [MathSciNet] [Google Scholar]
  8. F.E. Benth and H.K. Gjessing, A non linear parabolic equation with noise: a reduction method (1994). [Google Scholar]
  9. R.C. Dalang, D. Khoshnevisan and T. Zhang Global solutions to stochastic reaction-diffusion equations with super-linear drift and multiplicative noise. Ann. Probab. 47 (2019) 519–559. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Di Nunno, B. Øksendal and F. Proske, Malliavin Calculus for Lévy Processes with Applications to Finance. Springer (2009). [Google Scholar]
  11. K. Du, S. Tang and Q. Zhang Wm, p-solution (p ≥ 2) of linear degenerate backward stochastic partial differential equations in the whole space. J. Differ. Equ. 254 (2013) 2877–2904. [CrossRef] [Google Scholar]
  12. M. Fuhrman, Y. Ying Hu and G. Tessitore Stochastic maximum principle for optimal control of SPDEs. Appl. Math. Optim. 68 (2013) 181–217. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Fujita On the blowing up of solutions of the Cauchy problem for ut = Au + u1+α. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 13 (1966) 109–124. [Google Scholar]
  14. L. Gawarecki and V. Mandrekar, Stochastic differential equations in infinite dimensions: with applications to stochastic partial differential equations. Springer Science & Business Media (2010). [Google Scholar]
  15. H.K. Gjessing, Wick calculus with applications to anticipating stochastic differential equations. Institut Mittag-Leffler (1995). [Google Scholar]
  16. M. Hairer, An introduction to stochastic PDEs. Preprint arXiv:0907.4178 (2009). [Google Scholar]
  17. H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic partial differential equations. a modelling, white noise functional approach. Second Edition. Springer (2010). [Google Scholar]
  18. Y. Hu, J. Ma and J. Yong On semi-linear degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 123 (2002) 381–411. [CrossRef] [MathSciNet] [Google Scholar]
  19. Y. Hu and S. Peng Maximum principle for semilinear stochastic evolution control systems. Stoch. Stoch. Rep. 33 (1990) 159–180. [CrossRef] [Google Scholar]
  20. Q. Lu and X. Zhang, Mathematical Control Theory for Stochastic Partial Differential Equations. Springer, Berlin (2021). [Google Scholar]
  21. J. Ma and J. Yong On linear, degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 113 (1999) 135–170. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Marinelli and M. Röckner On the maximal inequalities of Burkholder, Davis and Gundy. Expositiones Math. 34 (2016) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  23. B. Øksendal Optimal control of stochastic partial differential equations. Stoch. Anal. Appl. 23 (2005) 165–179. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Øksendal, F. Proske and T. Zhang Backward stochastic partial differential equations with jumps and application to optimal control of random jump fields. Stochastics 77 (2005) 381–399. [CrossRef] [MathSciNet] [Google Scholar]
  25. B. Øksendal, A. Sulem and T. Zhang Singular control and optimal stopping of SPDEs, and backward SPDEs with reflection. Math. Oper. Res. 39 (2014) 464–486. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions. Third Edition. Springer (2019). [Google Scholar]
  27. É. Pardouxt Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3 (1980) 127–167. [CrossRef] [Google Scholar]
  28. É. Pardoux, Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. In Ecole d’Eté de Probabilités de Saint-Flour XIX—1989. Springer (1991), pp. 68–163. [Google Scholar]
  29. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press (2014). [Google Scholar]
  30. C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations. Springer (2007). [Google Scholar]
  31. M. Röckner and T. Zhang Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles. Potential Anal. 26 (2007) 255–279. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Smoller, Vol. 258 of Shock Waves and Reaction-Diffusion Equations. Springer Science & Business Media (2012). [Google Scholar]
  33. J. Wloka, Partial Differential Equations. Cambridge University Press (1987). [Google Scholar]
  34. X.Y. Zhou On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 31 (1993) 1462–1478. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.