Open Access
Volume 29, 2023
Article Number 13
Number of page(s) 23
Published online 25 January 2023
  1. M. Amar, V. De Cicco and N. Fusco, Lower semicontinuity results for free discontinuity energies. Math. Models Methods Appl. Sci. 20 (2010) 707–730. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, On the lower semicontinuity of quasi-convex integrals in SBV(Ω; ℝk). Nonlinear Anal. 23 (1994) 405–425. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69 (1990) 307–333. [MathSciNet] [Google Scholar]
  4. L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ratl. Mech. Anal., 139 (1997) 201–238. [CrossRef] [Google Scholar]
  5. L. Ambrosio, G. Crasta, V. De Cicco and G. De Philippis, A nonautonomous chain rule formula in W1,p and in BV. Manuscr. Math. 140 (2013) 461–480. [CrossRef] [Google Scholar]
  6. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Monographs, The Clarendon Press Oxford University Press, New York (2000). [Google Scholar]
  7. G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7 (1962) 55–129. [CrossRef] [Google Scholar]
  8. G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998) 337–351. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Carriero, G. Dal Maso, A. Leaci and E. Pascali, Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359–396. [MathSciNet] [Google Scholar]
  10. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580. Springer Verlag, Berlin (1977). [Google Scholar]
  11. A. Chambolle, S. Conti and F. Iurlano, Approximation of functions with small jump sets and existence of strong minimizers of Griffith’s energy. J. Math. Pures Appl. 128 (2019), 119–139. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Chambolle and V. Crismale, A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch. Ratl. Mech. Anal. 232 (2019) 1329–1378. [CrossRef] [Google Scholar]
  13. A. Chambolle and V. Crismale, Compactness and lower semicontinuity in GSBD. J. Eur. Math. Soc. 23 (2021) 701–719. [Google Scholar]
  14. A. Chambolle and V. Crismale, Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities. To appear on Ann. Sc. Norm. Super. Pisa Cl. Sci. (2022). D0I:10.2422/2036-2145.202006_002. [Google Scholar]
  15. S. Conti, M. Focardi and F. Iurlano, Existence of strong minimizers for the Griffith static fracture model in dimension two. Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019) 455–474. [CrossRef] [MathSciNet] [Google Scholar]
  16. V. Crismale, On the approximation of SBD functions and some applications. SIAM J. Math. Anal. 51 (2019) 5011–5048. [CrossRef] [MathSciNet] [Google Scholar]
  17. V. Crismale and M. Friedrich, Equilibrium configurations for epitaxially strained films and material voids in three-dimensional linear elasticity. Arch. Ratl. Mech. Anal. 237 (2020) 1041–1098. [CrossRef] [Google Scholar]
  18. G. Dal Maso, On the integral representation of certain local functionals. Ricerche Mat. 32 (1983) 85–113. [MathSciNet] [Google Scholar]
  19. G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. 15 (2013) 1943–1997. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165–225. [Google Scholar]
  21. G. Dal Maso, G. Orlando and R. Toader, Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv. Calc. Var. 10 (2017) 183–207. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Dal Maso and R. Toader, A model for the quasistatic growth of brittle fractures, existence and approximation results. Arch. Ratl. Mech. Anal. 162 (2002) 101–135. [CrossRef] [Google Scholar]
  23. V. De Cicco, Lower semicontinuity for nonautonomous surface integrals. Rend. Lincei Mat. Appl. 26 (2015) 1–21. [Google Scholar]
  24. V. De Cicco, N. Fusco and A. Verde, A chain rule formula in BV and application to lower semicontinuity. Calc. Var. 28 (2007) 427–447. [CrossRef] [MathSciNet] [Google Scholar]
  25. V. De Cicco, N. Fusco and A. Verde, On L1-lower semicontinuity in BV. J. Convex Anal. 12 (2005) 173–185. [MathSciNet] [Google Scholar]
  26. E. De Giorgi, Semicontinuity theorems in the calculus of variations. With notes by U. Mosco, G. Troianiello and G. Vergara and a preface by C. Sbordone. Quaderni dell’Accademia Pontaniana 56 (2008). [Google Scholar]
  27. F. Ebobisse, A lower semicontinuity result for some integral functionals in the space SBD. Nonlinear Anal: Theory, Methods Appl. A 62 (2005) 1333–1351. [CrossRef] [Google Scholar]
  28. H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivatives are pth power summable. Indiana Un. Math. J. 22 (1972) 139–158. [CrossRef] [Google Scholar]
  29. I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer Monographs in Mathematics, Springer (2007). [Google Scholar]
  30. G.A. Francfort and J.J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Friedrich, M. Perugini and F. Solombrino, Lower semicontinuity for functionals defined on piecewise rigid functions and on GSBD. J. Funct. Anal. 280 (2021) 108929. [CrossRef] [Google Scholar]
  32. M. Friedrich and F. Solombrino, Functionals defined on piecewise rigid functions: integral representation and Γ-convergence. Arch. Ratl. Mech. Anal. 236 (2020) 1325–1387. [CrossRef] [Google Scholar]
  33. M. Friedrich and F. Solombrino, Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) 27–64. [CrossRef] [MathSciNet] [Google Scholar]
  34. G. Gargiulo and E. Zappale, A lower semicontinuity result in SBD. J. Convex Anal. 15 (2008) 191–200. [MathSciNet] [Google Scholar]
  35. G. Gargiulo and E. Zappale, Some sufficient conditions for lower semicontinuity in SBD and applications to minimum problems of Fracture Mechanics. Math. Methods Appl. Sci. 34 (2011) 1541–1552. [CrossRef] [MathSciNet] [Google Scholar]
  36. A.A. Griffith, The phenomenon of rupture and flow in solids. Phil Trans. Royal Soc. London A 221 (1920) 163–198. [Google Scholar]
  37. S.Y. Kholmatov and P. Piovano, A unified model for stress-driven rearrangement instabilities. Arch. Ratl. Mech. Anal. 238 (2020) 415–488. [CrossRef] [PubMed] [Google Scholar]
  38. R. Temam, Mathematical problems in plasticity. Gauthier-Villars (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.