Open Access
Volume 29, 2023
Article Number 12
Number of page(s) 20
Published online 19 January 2023
  1. G. Alberti and F. Serra Cassano, Non-occurrence of gap for one-dimensional autonomous functionals. In Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), volume 18 of Ser. Adv. Math. Appl. Sci., World Sci. Publ., River Edge, NJ (1994) 1–17. [Google Scholar]
  2. L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl. 142 (1989) 301–316. [Google Scholar]
  3. J.M. Ball and V.J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Rati. Mech. Anal. 90 (1985) 325–388. [Google Scholar]
  4. P. Bettiol and C. Mariconda, A new variational inequality in the calculus of variations and Lipschitz regularity of minimizers. J. Differ. Equ. 268 (2020) 2332–2367. [Google Scholar]
  5. P. Bettiol and C. Mariconda, Regularity and necessary conditions for a Bolza optimal control problem. J. Math. Anal. Appl. 489 (2020) Article ID 124123. [Google Scholar]
  6. P. Bettiol and C. Mariconda, A Du Bois-Reymond convex inclusion for non-autonomous problems of the Calculus of Variations and regularity of minimizers. Appl. Math. Optim. 83 (2021) 2083–2107. [Google Scholar]
  7. P. Cannarsa, H. Frankowska and E.M. Marchini, Existence and Lipschitz regularity of solutions to Bolza problems in optimal control. Trans. Am. Math. Soc. 361 (2009) 4491–4517. [Google Scholar]
  8. P. Cannarsa, H. Frankowska and E.M. Marchini, On Bolza optimal control problems with constraints. Discr. Contin. Dyn. Syst. Ser. B 11 (2009) 629–653. [Google Scholar]
  9. A. Cellina, The classical problem of the calculus of variations in the autonomous case: relaxation and Lipschitzianity of solutions. Trans. Am. Math. Soc. 356 (2004) 415–426. [Google Scholar]
  10. A. Cellina and A. Ferriero, Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case. Ann. Inst. H. Poincare Anal. Non Linéaire 20 (2003) 911–919. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Cellina, G. Treu and S. Zagatti, On the minimum problem for a class of non-coercive functionals. J. Differ. Equ. 127 (1996) 225–262. [Google Scholar]
  12. L. Cesari, Optimization-theory and applications. Volume 17 of Applications of Mathematics (New York). Springer-Verlag, New York (1983). [Google Scholar]
  13. F.H. Clarke, An indirect method in the calculus of variations. Trans. Am. Math. Soc. 336 (1993) 655–673. [Google Scholar]
  14. F.H. Clarke, Necessary conditions in dynamic optimization. Mem. Am. Math. Soc. 173 (2005). [Google Scholar]
  15. F.H. Clarke, Functional analysis, calculus of variations and optimal control. Graduate Texts in Mathematics 264. Springer, London (2013). [Google Scholar]
  16. F.H. Clarke and R.B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Am. Math. Soc. 289 (1985) 73–98. [Google Scholar]
  17. G. Dal Maso and H. Frankowska, Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions and Hamilton-Jacobi equations. Appl. Math. Optim. 48 (2003) 39–66. [Google Scholar]
  18. C. Mariconda and G. Treu, Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth. Calc. Var. Partial Differ. Equ. 29 (2007) 99–117. [Google Scholar]
  19. C. Mariconda, Equi-Lipschitz minimizing trajectories for non coercive, discontinuous, non convex Bolza controlled-linear optimal control problems. Trans. Am. Math. Soc. Ser. B 8 (2021) 899–947. [CrossRef] [Google Scholar]
  20. L. Tonelli, Fondamenti di calcolo delle variazioni vol. I. Zanichelli (1922). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.