Open Access
Volume 29, 2023
Article Number 40
Number of page(s) 28
Published online 09 June 2023
  1. A. Abdelghany, K. Abdelghany, H. Mahmassani and W. Alhalab, Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities. Eur. J. Oper. Res. 237 (2014) 1105–1118. [CrossRef] [Google Scholar]
  2. G. Albi, E. Bongini, M. Cristiani and D. Kalise, Invisible control of self-organizing agents leaving unknown environments. Siam J. Appl. Math. 76 (2016) 1683–171. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus. Commun. Math. Sci. 13 (2015) 1407–1429. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Albi, L. Pareschi and M. Zanella, Boltzmann-type control of opinion consensus through leaders. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014) 20140138. [Google Scholar]
  5. G. Aletti, G. Naldi and G. Toscani, First-order continuous models of opinion formation. SIAM J. Appl. Math. 67 (2007) 837–853. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Ambrosio and N. Gigli, A user’s guide to optimal transport, in Modelling and Optimisation of Flows on Networks. Springer (2013) 1–155. [Google Scholar]
  7. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, in Lectures in Mathematics ETH Zürich, 2nd ed. Birkhäuser Verlag, Basel (2008). [Google Scholar]
  8. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Nat. Acad. Sci. U.S.A. 105 (2008) 1232–1237. [CrossRef] [PubMed] [Google Scholar]
  9. R. Bellman, Dynamic Programming Equations in Biology. Princeton Univeristy Press, Princeton (1957). [Google Scholar]
  10. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics (1999). [CrossRef] [Google Scholar]
  11. J. Bomont, J. Bretonnet, D. Costa and J. Hansen, Communication: thermodynamic signatures of cluster formation in fluids with competing interactions. J. Chem. Phys. 137 (2012) 011101. [CrossRef] [PubMed] [Google Scholar]
  12. M. Bongini and G. Buttazzo, Optimal control problems in transport dynamics. Math. Models Methods Appl. Sci. 27 (2017) 427–451. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Bongini, M. Fornasier, O. Junge and B. Scharf, Sparse control of alignment models in high dimension. Netw. Heterog. Media 10 (2015) 647–697. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Bores, E. Lomba, A. Perera and N.G. Almarza, Pattern formation in binary fluid mixtures induced by short-range competing interactions. J. Chem. Phys. 143 (2015) 084501. [CrossRef] [PubMed] [Google Scholar]
  15. M. Burger, R. Pinnau, C. Totzeck and O. Tse, Mean-field optimal control and optimality conditions in the space of probability measures. SIAM J. Control Optim. 59 (2021) 977–1006. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Burger, R. Pinnau, C. Totzeck, O. Tse and A. Roth, Instantaneous control of interacting particle systems in the mean-field limit. J. Comput. Phys. 405 (2020) 109181. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, Self-organization in Biological Systems. Princeton University Press, Princeton. North-Holland Mathematics Studies, No. 5. Notas de Matemática (2003) 50. [Google Scholar]
  18. M. Caponigro, M. Fornasier, B. Piccoli, and E. Trelat, Sparse stabilization and optimal control of the Cucker–Smale model. Math. Control Relat. Fields 3 (2013) 447–466. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions, and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, Kinetic, and Hydrodynamic Models of Swarming. Birkhäuser Boston, Boston (2010) 297–336. [Google Scholar]
  22. R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023. [CrossRef] [MathSciNet] [Google Scholar]
  23. I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision making in animal groups on the move. Nature 433 (2005) 513–516. [CrossRef] [PubMed] [Google Scholar]
  24. E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol. 62 (2011) 569–588. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. Birkhäuser Boston, Boston (2010) 337–364. [Google Scholar]
  26. F. Cucker and J. G. Dong, A general collision-avoiding flocking framework. IEEE Trans. Automat. Control 56 (2011) 1124–1129. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Cucker and S. Smale, Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007) 852–862. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Daneri and E. Runa, Pattern formation for a local/nonlocal interaction functional arising in colloidal systems. SIAM J. Math. Anal. 52 (2002) 2531–2560. [Google Scholar]
  29. M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction pdes with two species. Nonlinearity 26 (2013) 2777. [CrossRef] [MathSciNet] [Google Scholar]
  30. R.L. Dobrucšin, Vlasov equations. Funktsional. Anal. i Prilozhen. 13 (1978) 48–58. [Google Scholar]
  31. B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009) 3687–3708. [MathSciNet] [Google Scholar]
  32. M. Fornasier and F. Solombrino, Mean-field optimal control. ESAIM: Control Optim. Calc. Var. 20 (2014) 1123–1152. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  33. S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1 (2008) 415–435. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Han, M. Li and L. Guo, Soft control on collective behavior of a group of autonomous agents by a shill agent. J. Syst. Sci. Complex. 19 (2006) 54–62. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Han and L. Wang, Nondestructive intervention to multi-agent systems through an intelligent agent. PLoS ONE 8 (2013) e61542. [CrossRef] [PubMed] [Google Scholar]
  36. R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. [CrossRef] [MathSciNet] [Google Scholar]
  37. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Ke, J. Minett, C.-P. Au and W.-Y. Wang, Self-organization and selection in the emergence of vocabulary. Complexity 7 (2002) 41–54. [CrossRef] [MathSciNet] [Google Scholar]
  39. J.-M. Lasry and P.-L. Lions, Mean field games. Japan J. Math. 2 (2007) 229–260. [CrossRef] [Google Scholar]
  40. C.B. Morrey, Jr., On the derivation of the equations of hydrodynamics from statistical mechanics. Comm. Pure Appl. Math. 8 (1955) 279–326. [CrossRef] [MathSciNet] [Google Scholar]
  41. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Equ. 26 (2001) 101–174. [CrossRef] [Google Scholar]
  42. J. Parrish, S. Viscido and D. Gruenbaum, Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202 (2002) 296–305. [CrossRef] [PubMed] [Google Scholar]
  43. B. Perthame, Transport Equations in Biology. Birkhäuser Verlag, Basel (2007). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). [Google Scholar]
  44. F. Santambrogio, Optimal transport for applied mathematicians. Birkäuser, NY 55 (2015) 94. [Google Scholar]
  45. M.B. Short, M.R. D’Orsogna, V.B. Pasour, G.E. Tita, P.J. Brantingham, A.L. Bertozzi and L.B. Chayes, A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18 (2008) 1249–1267. [CrossRef] [MathSciNet] [Google Scholar]
  46. G. Toscani, Kinetic models of opinion formation. Commun. Math. Sci. 4 (2006) 481–496. [CrossRef] [MathSciNet] [Google Scholar]
  47. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995) 1226–1229. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  48. T. Vicsek and A. Zafeiris, Collective motion. Phys. Rep. 517 (1012) 71–140. [Google Scholar]
  49. S. Wongkaew, M. Caponigro and A. Borzi, On the control through leadership of the hegselmann–krause opinion formation model. Math. Models Methods Appl. Sci. 25 (2015) 565–585. [CrossRef] [MathSciNet] [Google Scholar]
  50. H. Yukawa, On the interaction of elementary particles. I Proc. Phys. Math. Soc. Jap. 17 (1935) 48. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.