Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 89
Number of page(s) 22
DOI https://doi.org/10.1051/cocv/2023082
Published online 22 December 2023
  1. H.R. Wilson and J.D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12 (1972) 1–23. [CrossRef] [Google Scholar]
  2. H.R. Wilson and J.D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13 (1973) 55–80. [CrossRef] [PubMed] [Google Scholar]
  3. P.C. Bressloff, Waves in neural media. Lecture Notes on Mathematical Modelling in the Life Sciences (2014). [CrossRef] [Google Scholar]
  4. G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience, Vol. 35. Springer Science & Business Media (2010). [CrossRef] [Google Scholar]
  5. H.R. Wilson, J.D. Cowan and H. Luebbering, Excitatory and inhibitory dynamics of model neurons. GitHub repository, https://hluebbering.github.io/model-neurons/, 2020. [Google Scholar]
  6. P. Dayan and L.F. Abbott, Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational Neuroscience Series (2001). [Google Scholar]
  7. E.A. Maguire, D.G. Gadian, I.S. Johnsrude, C.D. Good, J. Ashburner, R.S.J. Frackowiak and C.D. Frith, Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 4398–4403. [CrossRef] [PubMed] [Google Scholar]
  8. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control 61 (1995) 1327–1361. [CrossRef] [Google Scholar]
  9. M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999) 922–937. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Fliess and H. Mounier, Tracking control and π-freeness of infinite dimensional linear Systems, edited by G. Picci and D.S. Gilliam, Dynamical Systems, Control, Coding, Computer Vision. Birkhäuser, Basel (1999) 45–68. [CrossRef] [Google Scholar]
  11. J. Lévine, Analysis and Control of Nonlinear Systems: A Flatness-Based Approach. Springer (2009). [Google Scholar]
  12. H. Mounier and J. Rudolph, Flatness-based control of nonlinear delay systems: a chemical reactor example. Int. J. Control 71 (1998) 871–890. [CrossRef] [Google Scholar]
  13. A. Bandyopadhyay, C. Bernard, V.K. Jirsa and S. Petkoski, Mean-field approximation of network of biophysical neurons driven by conductance-based ion exchange. bioRxiv, 2022. [Google Scholar]
  14. C. Cakan and K. Obermayer, Biophysically grounded mean-field models of neural populations under electrical stimulation. PLOS Computat. Biol. 16 (2020) 1–30. [Google Scholar]
  15. K. Fritzsche, Y. Guo and K. Röbenack, Nonlinear control of non-observable non-flat mimo state space systems using flat inputs, in Proc. of the 23rd ICSTCC. IEEE (2019) 173–179. [Google Scholar]
  16. F. Nicolau, W. Respondek and J.P. Barbot, Constructing flat inputs for two-output systems, in Proc. MTNS, 2018, 414–421. [Google Scholar]
  17. F. Nicolau, W. Respondek and J.P. Barbot, Flat inputs: theory and applications. SIAM J. Control Optim. 58 (2020). [Google Scholar]
  18. S. Waldherr and M. Zeitz, Conditions for the existence of a flat input. Int. J. Control 81 (2008) 439–443. [CrossRef] [Google Scholar]
  19. S. Waldherr and M. Zeitz, Flat inputs in the mimo case. IFAC Proc. 43 (2010) 695–700. [CrossRef] [Google Scholar]
  20. G Rigatos, Advanced models of neural networks. Nonlinear Dynamics and Stochasticity in Biological Neurons. Springer 92013). [Google Scholar]
  21. F. Nicolau and H. Mounier, Differential flatness and Liouvillian character of two HPA axis models, in Proc. of the 9th International Conference on the Foundations of Systems Biology in Engineering FOSBE, 2022. [Google Scholar]
  22. F. Nicolau, H. Mounier and I.P. Androulakis, HPA axis differential flatness and liouvillian study for higher resiliency investigations. J. Math. Control Inform. (2023) in press, https://doi.org/10.1093/imamci/dnad030. [Google Scholar]
  23. F. Nicolau and H. Mounier, Flatness of networks of two synaptically coupled excitatory-inhibitory neural modules, in Proc. of the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS, 2022. [Google Scholar]
  24. F. Nicolau and H. Mounier, Flatness of networks of two synaptically coupled excitatory-inhibitory neural modules with maximal symmetry, in Proc. of the 21st European Control Conference, 2023. [Google Scholar]
  25. Ph. Martin, R.M. Murray and P. Rouchon, Flat systems, equivalence and feedback, edited by A. Baños, F. Lamnabhi-Lagarrigue and F.J. Montoya, Advances in the Control of Nonlinear Systems. Springer London, London, (2001) 5–32. [CrossRef] [Google Scholar]
  26. R.W. Brockett, Feedback invariants for nonlinear systems. IFAC Congress 6, Helsinki, 1979, 1115–1120. [Google Scholar]
  27. B. Jakubczyk and W. Respondek, On linearization of control systems. Bull. Acad. Polonaise Sci. Ser. Sci. Math. (1980) 517–522. [Google Scholar]
  28. L. Hunt and R. Su, Linear equivalents of nonlinear time varying systems, in Proc. MTNS, Santa Monica, CA, 1981, 119–123. [Google Scholar]
  29. W. Respondek, Introduction to geometric nonlinear control linearization, observability, decoupling. Mathematical Control Theory No. 1, edited by A. Agrachev, Lecture Notes Series of the Salam Int. Centre for Theoretical Physics, Vol. 8 (2002) 169–222. [Google Scholar]
  30. A.J. van der Schaft, Linearization and input-output decoupling for general nonlinear systems. Syst. Contr. Lett. 5 (1984) 27–33. [CrossRef] [Google Scholar]
  31. B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim. 29 (1991) 38–57. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.