Open Access
Volume 29, 2023
Article Number 59
Number of page(s) 11
Published online 31 July 2023
  1. N. Burq and R. Joly, Exponential decay for the damped wave equation in unbounded domains. Commun. Contemp. Math. 18 (2016) 1650012. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory. Boll. Unione Mat. Ital. 2-B (1999) 33–63. [Google Scholar]
  3. A. Dicke, A. Seelmann and I. Veselic, Control problem for quadratic parabolic differential equations with sensor sets of finite volume or anisotropically decaying density. Preprint arXiv:2201.02370 [math.AP] (2022). [Google Scholar]
  4. M. Egidi and A. Seelmann, The reflection principle in the control problem of the heat equation. J. Dyn. Control Syst. 28 (2022) 635–655. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Egidi and I. Veselić, Sharp geometric condition for null-controllability of the heat equation on ℝd and consistent estimates on the control cost. Arch. Math. 111 (2018) 1–15. [Google Scholar]
  6. W. Green. On the energy decay rate of the fractional wave equation on ℝ with relatively dense damping. roc. Amer. Math. Soc. 148 (2020) 4745–4753. [CrossRef] [Google Scholar]
  7. S. Huang, G. Wang and M. Wang, Observable sets, potentials and schrödinger equations. Commun. Math. Phys. 395 (2022) 1297–1343. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschrift 41 (1936) 367–379. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Jaffard, Contrôle interne exact des vibrations d’une plaque rectangulaire. Portugal. Math. 47 (1990) 423–429. [MathSciNet] [Google Scholar]
  10. J.P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires. Ann. Sci. École Norm. Sup. 79 (1962) 93–150. [CrossRef] [MathSciNet] [Google Scholar]
  11. V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer Monographs in Mathematics. Springer-Verlag, New York (2005). [CrossRef] [Google Scholar]
  12. O.E. Kovrijkine, Some estimates of Fourier transforms. Ph. D. thesis. California Institute of Technology, ProQuest LLC, Ann Arbor, MI (2000). [Google Scholar]
  13. P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser Basel (1993). [CrossRef] [Google Scholar]
  14. K. Le Balc’h and J. Martin, Observability estimates for the Schrödinger equation in the plane with periodic bounded potentials from measurable sets. Preprint arXiv:2304.08050 [math.AP] (2023). [Google Scholar]
  15. J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1998) 1–68. [Google Scholar]
  16. V.N. Logvinenko and J.F. Sereda, Equivalent norms in spaces of entire functions of exponential type. Teor. Funkciı Funkcional. Anal. i Prilozen. Vyp. 20 (1974) 102–111. [Google Scholar]
  17. L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425–444. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Martin and K. Pravda-Starov, Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations. Preprint arXiv:2007.04096 [math.AP] (2020). [Google Scholar]
  19. I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Scale-free uncertainty principles and Wegner estimates for random breather potentials. C. R. Math. 353 (2015) 919–923. [CrossRef] [MathSciNet] [Google Scholar]
  20. I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Scale-free unique continuation principle, eigenvalue lifting and Wegner estimates for random Schrödinger operators. Anal. PDE 11 (2018) 1049–1081. [CrossRef] [MathSciNet] [Google Scholar]
  21. I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM: COCV 26 (2020) 54. [CrossRef] [EDP Sciences] [Google Scholar]
  22. L. Rosier and B.Y. Zhang, Exact boundary controllability of the nonlinear schrödinger equation. J. Differ. Equ. 246 (2009) 4129–4153. [CrossRef] [Google Scholar]
  23. J. Sjöstrand, Microlocal analysis for the periodic magnetic Schrodinger equation and related questions, in Microlocal Analysis and Applications, edited by L. Cattabriga and L. Rodino. Springer Berlin Heidelberg, Berlin, Heidelberg (1991) 237–332. [CrossRef] [Google Scholar]
  24. M. Täufer, Quantitative unique continuation and applications. Dissertation at TU Dortmund, 2018. [Google Scholar]
  25. M. Täufer and M. Tautenhahn, Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Commun. Pure Appl. Anal. 16 (2017) 1719–1730. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Täufer and M. Tautenhahn, Wegner estimate and disorder dependence for alloy-type hamiltonians with bounded magnetic potential. Ann. Henri Poincaré 19 (2017) 1151–1165. [Google Scholar]
  27. M. Täufer and I. Veselić, Conditional Wegner estimate for the standard random breather potential. J. Stat. Phys. 161 (2015) 902–914. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Täufer and I. Veselić, Wegner estimate for Landau-breather Hamiltonians. J. Math. Phys. 57 (2016) 072102. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Täufer and I. Veselić, Wegner estimate and localisation for alloy type operators with minimal support assumptions on the single site potential. Preprint arXiv:2103.09012 [math.AP] (2021). [Google Scholar]
  30. G. Wang, M. Wang and Y. Zhang, Observability and unique continuation inequalities for the schrödinger equation. J. Eur. Math. Soc. 21 (2019) 3513–3572. [CrossRef] [MathSciNet] [Google Scholar]
  31. G. Wang, M. Wang, C. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in n. J. Math. Pures Appl. 126 (2019) 144–194. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.