Open Access
Volume 29, 2023
Article Number 77
Number of page(s) 23
Published online 08 November 2023
  1. V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Science & Business Media (2010). [CrossRef] [Google Scholar]
  2. G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Springer International Publishing (2016). [CrossRef] [Google Scholar]
  3. E.B. Castelan, S. Tarbouriech, J.M. Gomes da SilvaJr and I. Queinnec, L2-stabilization of continuous-time linear systems with saturating actuators. Int. J. Robust Nonlinear Control 16 (2006) 935–944. [CrossRef] [Google Scholar]
  4. G.D. Chen, D.Y. Yao, H.Y. Li, Q. Zhou and R.Q. Lu, Saturated threshold event-triggered control for multiagent systems under sensor attacks and its application to UAVs. IEEE Trans. Circuits Syst. I: Regular Pap. 69 (2021) 884–895. [Google Scholar]
  5. P. Colaneri, V. Kuera and S. Longhi, Polynomial approach to the control of SISO periodic systems subject to input constraint. Automatica 39 (2003) 1417–1424. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-M. Coron, G. Bastin and B. d’Andréa Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498. [Google Scholar]
  7. J.M.G. Da Silva and S. Tarbouriech, Anti-windup design with guaranteed region of stability: an LMI-based approach. IEEE Trans. Automatic Control 50 (2005) 106–111. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Dai, T.S. Hu, A.R. Teel and L. Zaccarian, Piecewise-quadratic lyapunov functions for systems with deadzones or saturations. Syst. Control Lett. 58 (2009) 365–371. [CrossRef] [Google Scholar]
  9. P.W. Dower and P.M. Farrel, On linear control of backward pumped Raman amplifiers. 14th IFAC Symposium on System Identification, Newcastle, Australia, 2006. [Google Scholar]
  10. N.H. El-Farra, A. Armaou and P.D. Christofides, Analysis and control of parabolic PDE systems with input constraints. Automatica 39 (2003) 715–725. [CrossRef] [MathSciNet] [Google Scholar]
  11. B.D. Greenshileds, J.R. Bibbins, W.S. Channing and H.H. Miller, A study of traffic capacity. Highway Res. Board Proceed. (1935). [Google Scholar]
  12. M. Gugat, M. Dick and G. Leugering, Gas flow in fan-shaped networks: classical solutions and feedback stabilization. SIAM J. Control Optim. 49 (2011) 2101–2117. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Haim, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media (2010). [Google Scholar]
  14. A. Hayat, On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the C1 norm. ESAIM: Control Optim. Calc. Var. 25 (2019) 82. [CrossRef] [EDP Sciences] [Google Scholar]
  15. M. Herty and W.A. Yong, Feedback boundary control of linear hyperbolic systems with relaxation. Automatica 69 (2016) 12–17. [CrossRef] [Google Scholar]
  16. P.-O. Lamare and N. Bekiaris-Liberis, Control of 2 × 2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking. Syst. Control Lett. 86 (2015) 24–33. [CrossRef] [Google Scholar]
  17. P.-O. Lamare, A. Girard and C. Prieur, An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems. ESAIM: Control Optim. Calc. Var. 22 (2016) 1236–1263. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  18. T. Li and X. Lu, Exact boundary synchronization for a kind of first order hyperbolic system. ESAIM: Control Optim. Calc. Var. 28 (2022) 34. [CrossRef] [EDP Sciences] [Google Scholar]
  19. M.J. Lighthill and J.B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 229 (1955) 317–345. [Google Scholar]
  20. Z.J. Liu, J.K. Liu and W. He, Adaptive boundary control of a flexible manipulator with input saturation. Int. J. Control 89 (2016) 1191–1202. [CrossRef] [Google Scholar]
  21. F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems. J. Nonlinear Sci. 12 (2002) 619–640. [Google Scholar]
  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  23. C. Prieur, S. Tarbouriech and J.M.G. Da Silva, Wave equation with cone-bounded control laws. IEEE Trans. Automatic Control 61 (2016) 3452–3463. [CrossRef] [MathSciNet] [Google Scholar]
  24. Y. Ren, Z.J. Zhang, C.L. Zhang, Q.M. Yang and K.S. Hong, Adaptive neural-network boundary control for a flexible manipulator with input constraints and model uncertainties. IEEE Trans. Cybernet. 51 (2021) 4796–4807. [CrossRef] [PubMed] [Google Scholar]
  25. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. [CrossRef] [Google Scholar]
  26. L.F. Shampine, Solving Hyperbolic PDEs in MATLAB. Appl. Numer. Anal. Comput. Math. 2 (2005) 346–358. [CrossRef] [MathSciNet] [Google Scholar]
  27. S. Shreim, F. Ferrante and C. Prieur, Design of saturated boundary control for hyperbolic systems with in-domain disturbances. Automatica 142 (2022) 110346. [CrossRef] [Google Scholar]
  28. S. Tarbouriech, G. Garcia, J.M.G. da SilvaJr and I. Queinnec, Stability and Stabilization of Linear Systems with Saturating Actuators. Springer Science & Business Media (2011). [CrossRef] [Google Scholar]
  29. C.Y. Wen, J. Zhou, Z.T. Liu and H.Y. Su, Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Automatic Control 56 (2011) 1672–1678. [CrossRef] [MathSciNet] [Google Scholar]
  30. H. Yu, M. Diagne, L. Zhang and M. Krstic, Bilateral boundary control of moving shockwave in LWR model of congested traffic. IEEE Trans. Automatic Control 66 (2020) 1429–1436. [Google Scholar]
  31. H. Yu, L. Zhang, M. Diagne and M. Krstic, Bilateral boundary control of moving traffic Schockwave. IFAC-PapersOnLine 52 (2019) 48–53. [CrossRef] [Google Scholar]
  32. J.P. Yu, P. Shi, J.P. Liu and C. Lin, Neuroadaptive finite-time control for nonlinear MIMO systems with input constraint. IEEE Trans. Cybernet. 52 (2020) 6676–6683. [Google Scholar]
  33. F.Z. Zhang, The Schur Complement and its Applications. Springer Science & Business Media (2006). [Google Scholar]
  34. L. Zhang, C. Prieur, and J. Qiao, Local proportional-integral boundary feedback stabilization for quasilinear hyperbolic systems of balance laws. SIAM J. Control Optim. 58 (2020) 2143–2170. [CrossRef] [MathSciNet] [Google Scholar]
  35. H.X. Zhao, J.Y. Zhan and L.G. Zhang, Saturated boundary feedback control of LWR traffic flow models with lane-changing. 61st IEEE Conference on Decision and Control (CDC), Cancun, Mexico, 2022. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.