Open Access
Volume 29, 2023
Article Number 75
Number of page(s) 21
Published online 06 October 2023
  1. B. Allibert, Contrôle analytique de l’équation des ondes et de l’équation de Schrödinger sur des surfaces de révolution. Commun. Partial Differ. Equ. 23 (1998) 1493–1556. [CrossRef] [Google Scholar]
  2. A. Benabdallah, M. Ben-Artzi and Y. Dermenjian, Concentration and non-concentration of eigenfunctions of second-order elliptic operators in layered media. arXiv:2212.05872, 2022. [Google Scholar]
  3. S. Balac, M. Dauge, Y. Dumeige and Z. Moitier, Mathematical analysis of whispering gallery modes in graded index optical micro-disk resonators., 2020. [Google Scholar]
  4. S. Balac, M. Dauge and Z. Moitier, Asymptotics for 2d whispering gallery modes in optical micro-disks with radially varying index. IMA J. Appl. Math. 86 (2021) 1212–1265. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Christianson, Unique continuation for quasimodes on surfaces of revolution: rotationally invariant neighbourhoods. Ann. Inst. Fourier 65 (2015) 1617–1645. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Vol. 268 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1999). [Google Scholar]
  7. S. Filippas, Quantitative unique continuation for wave operators with a jump discontinuity across an interface and applications to approximate control. ArXiv preprint arXiv:2210.04634, 2022. [Google Scholar]
  8. L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a narrow strip. Isr. J. Math. 170 (2009) 337–354. [CrossRef] [Google Scholar]
  9. B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Vol. 1336 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1988). [CrossRef] [Google Scholar]
  10. L. Hillairet and J.L. Marzuola, Eigenvalue spacing for 1d singular Schrödinger operators. Asymptotic Anal. 133 (2023) 267–289. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Lebeau, Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Vol. 19 of Math. Phys. Stud. Kluwer Academic Publishers, Dordrecht (1996) 73–109. [Google Scholar]
  12. M. Lewin, Théorie spectrale et mécanique quantique. Lecture notes., 2018. [Google Scholar]
  13. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Vol. 8 of Recherches en Mathématiques Appliquées. Masson, Paris (1988). [Google Scholar]
  14. C. Laurent and M. Léautaud, Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves. J. Eur. Math. Soc. 21 (2019) 957–1069. [Google Scholar]
  15. C. Laurent and M. Léautaud, Observability of the heat equation, geometric constants in control theory, and a conjecture of Luc Miller. Anal. PDE 14 (2021) 355–423. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Laurent and M. Léautaud, On uniform observability of gradient flows in the vanishing viscosity limit. J. Éc. polytech. Math. 8 (2021) 439–506. [CrossRef] [MathSciNet] [Google Scholar]
  17. C. Laurent and M. Léautaud, Uniform observation of semiclassical Schrödinger eigenfunctions on an interval. Tunisian J. Math. 5 (2023) 125–170. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Rational Mech. Anal. 105 (2010) 953–990. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Le Rousseau and N. Lerner, Carleman estimates for anisotropic elliptic operators with jumps at an interface. Anal. PDE 6 (2013) 1601–1648. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Le Rousseau, M. Léautaud and L. Robbiano, Controllability of a parabolic system with a diffuse interface. J. Eur. Math. Soc. 15 (2013) 1485–1574. [CrossRef] [MathSciNet] [Google Scholar]
  21. F.W.J. Olver, Asymptotics and special functions. Computer Science and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1974). [Google Scholar]
  22. G. Popov and G. Vodev, Resonances near the real axis for transparent obstacles. Commun. Math. Phys. 207 (1999) 411–438. [CrossRef] [Google Scholar]
  23. M. Zworski, Semiclassical analysis, Vol. 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.