Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 74
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2023061
Published online 27 September 2023
  1. A.A. Allen and S.W. Hansen, Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete Contin. Dyn. Syst. B 14 (2010) 1279–1292. [Google Scholar]
  2. U. Aridogan and I. Basdogan, A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers. J. Intell. Mater. Syst. Struct. 26 (2015) 1455–1476. [CrossRef] [Google Scholar]
  3. A.K. Aydin, A.Ö. Özer and J. Walterman, A novel finite difference-based model reduction and a sensor design for a multilayer smart beam with arbitrary number of layers. IEEE Control Syst. Lett. 7 (2023) 1548–1553. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.K. Aydin and A.Ö. Özer, Robust controller/stabilizer design of a multi-layer Mead-Marcus beam by finite differences, in preparation. [Google Scholar]
  5. A.K. Aydin, M. Poynter, L. Stewart and A.Ö. Özer, Vibration Suppression on a hinged three-layer sandwich beam. https://demonstrations.wolfram.com (2023). [Google Scholar]
  6. A.K. Aydin, M. Poynter, L. Stewart and A.Ö. Özer, Feedback sensor design for a cantilevered three-layer sandwich beam. https://demonstrations.wolfram.com (2023). [Google Scholar]
  7. B.P. Baillargeon and S.S. Vel, Active vibration suppression of sandwich beams using piezoelectric shear actuators: experiments and numerical simulations. J. Intell. Mater. Syst. Struct. 16 (2005) 517–530. [CrossRef] [Google Scholar]
  8. R. Ballas, Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration. Springer (2007). [Google Scholar]
  9. H. Basaeri, Y. Yu, D. Young and S. Roundy, Acoustic power transfer for biomedical implants using piezoelectric receivers: effects of misalignment and misorientation. J. Micromech. Microeng. 29 (2019) 084004. [CrossRef] [Google Scholar]
  10. A. Baz, Boundary control of beams using active constrained layer damping. J. Vib. Acoust. 119 (1997) 166–172. [CrossRef] [Google Scholar]
  11. U. Biccari, A. Marica and E. Zuazua Propagation of one-and two-dimensional discrete waves under finite difference approximation. Found. Comput. Math. 20 (2020) 1401–1438. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Cindea, S. Micu and I. Roventa, Boundary controllability for finite-differences semidiscretizations of a clamped beam equation. SIAM J. Control Optim. 55 (2017) 785–817. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Ervedoza and E. Zuazua, On the Numerical Approximation of Exact Controls for Waves. Springer Briefs in Mathematics (2013). [CrossRef] [Google Scholar]
  14. R.H. Fabiano and S.W. Hansen, Modeling and analysis of a three-layer damped sandwich beam. Discrete Contin. Dynam. Syst. (2001) 143–155. https://mathscinet-σbams-σborg.wku.idm.oclc.org/mathscinet/article?mr=1988333 [Google Scholar]
  15. S.W. Hansen, Several related models for multilayer sandwich plates. Math. Models Methods Appl. Sci. 14 (2004) 1103–1132. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Hebrard and A. Henrot, A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44 (2005) 349–366. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation. Math. Model. Numer. Ann. 33 (1999) 407–438. [CrossRef] [EDP Sciences] [Google Scholar]
  18. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM. Masson-John Wiley, Paris (1994). [Google Scholar]
  19. L. Leon and E. Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM Control Opt. Calc. Var. 8 (2002) 827–862. [CrossRef] [EDP Sciences] [Google Scholar]
  20. P. Lissy and I. Roventa, Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation using finite-difference method. Math. Comp. 88 (2019) 273–291. [Google Scholar]
  21. J. Liu and B.Z. Guo, A novel semi-discrete scheme preserving uniformly exponential stability for an Euler–Bernoulli beam. Syst. Control Lett. 134 (2019) 104518. [CrossRef] [Google Scholar]
  22. J. Liu and B.Z. Guo, Uniformly semi-discretized approximation for exact observability and controllability of one-dimensional Euler–Bernoulli beam. Syst. Control Lett. 156 (2021) 105013. [CrossRef] [Google Scholar]
  23. J. Liu and B.Z. Guo, A new semi-discretized order reduction finite difference scheme for uniform approximation of 1-D wave equation. SIAM J. Control Optim. 58 (2020) 2256–228. [CrossRef] [MathSciNet] [Google Scholar]
  24. D.J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 10 (1969) 163–175. [CrossRef] [Google Scholar]
  25. A.Ö. Özer and S.W. Hansen, Exact boundary controllability of an abstract Mead-Marcus sandwich beam model, in 49th IEEE Conference on Decision and Control (CDC) (2010) 2578–2583. [Google Scholar]
  26. A.Ö. Özer, Modeling and well-posedness results for active constrained layered (ACL) beams with/without magnetic effects, in Proceedings of SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 97991F (2016). [Google Scholar]
  27. A.Ö. Özer, Modeling and controlling an active constrained layered (ACL) beam actuated by two voltage sources with/without magnetic effects. IEEE Trans. Automat. Contr. 62 (2017) 6445–6450. [CrossRef] [Google Scholar]
  28. A.Ö. Özer, Exponential stabilization of a smart piezoelectric composite beam with only one boundary controller, in Proceedings of the 6th IFAC Symposium on Lagrangian and Hamiltonian Methods for Nonlinear Control. Valparaiso, Chile 51 (2018) 80–85. [Google Scholar]
  29. A.Ö. Özer, Dynamic and electrostatic modeling for a piezoelectric smart composite and related stabilization results. Evol. Equ. Control Theory 7 (2018) 639–668. [CrossRef] [MathSciNet] [Google Scholar]
  30. A.Ö. Özer, Potential formulation for charge or current-controlled piezoelectric smart composites and stabilization results: electrostatic vs. quasi-static vs. fully-dynamic approaches. IEEE Trans. Automat. Contr. 64 (2019) 989–1002. [CrossRef] [Google Scholar]
  31. A.Ö. Özer, Uniform boundary observability of semi-discrete finite difference approximations of a Rayleigh beam equation with only one boundary observation, in 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France (2019) 7708–7713. [Google Scholar]
  32. A.Ö. Özer and A.K. Aydin, Uniform boundary observability of filtered finite difference approximations of a Mead-Marcus sandwich beam equation with only one boundary observation, in 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico (2022) 6536–6541. [Google Scholar]
  33. R. Rajaram, Moment Method in Distributed Control Theory. M.Sc. Thesis, Iowa State University (2003). [Google Scholar]
  34. H.J. Ren and B.Z. Guo, Uniformly exponential stability of semi-discrete scheme for observer- based control of 1-D wave equation, Syst. Control. Lett., 168 (2022) 105346. [CrossRef] [Google Scholar]
  35. L. Tebou and E. Zuazua, Uniform boundary stabilization of the finite differences space discretization of the 1-D wave equation. Adv. Comput. Math. 26 (2007) 337–365. [CrossRef] [MathSciNet] [Google Scholar]
  36. D. Wu, L. Huang, B. Pan, Y. Wang and S. Wu, Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material. Aerosp. Sci. Technol. 37 (2014) 10–19. [CrossRef] [Google Scholar]
  37. C. Yang and J.M. Wang, Exponential stability of an active constrained layer beam actuated by a voltage source without magnetic effects. J. Math. Anal. 448 (2017) 1204–1227. [CrossRef] [MathSciNet] [Google Scholar]
  38. E. Zuazua, Controllability of Partial Differential Equations, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.